Talk:Timeline of OpenAI
From Timelines
Removed Rows
In case any of these events turn our to be relevant, place them back on the timeline or let me know and I'll do it.
Year | Month and date | Domain | Event type | Details |
---|---|---|---|---|
2016 | May 25 | Publication | "Adversarial Training Methods for Semi-Supervised Text Classification" is submitted to the ArXiv. The paper proposes a method that achieves better results on multiple benchmark semi-supervised and purely supervised tasks.[1] | |
2016 | June 21 | Publication | "Concrete Problems in AI Safety" is submitted to the arXiv. The paper explores practical problems in machine learning systems.[2] | |
2016 | October 11 | Publication | "Transfer from Simulation to Real World through Learning Deep Inverse Dynamics Model", a paper on robotics, is submitted to the ArXiv. It investigates settings where the sequence of states traversed in simulation remains reasonable for the real world.[3] | |
2016 | October 18 | Publication | "Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data", a paper on safety, is submitted to the ArXiv. It shows an approach to providing strong privacy guarantees for training data: Private Aggregation of Teacher Ensembles (PATE).[4] | |
2016 | November 2 | Publication | "Extensions and Limitations of the Neural GPU" is first submitted to the ArXiv. The paper shows that there are two simple ways of improving the performance of the Neural GPU: by carefully designing a curriculum, and by increasing model size.[5] | |
2016 | November 8 | Publication | "Variational Lossy Autoencoder", a paper on generative models, is submitted to the ArXiv. It presents a method to learn global representations by combining Variational Autoencoder (VAE) with neural autoregressive models.[6] | |
2016 | November 9 | Publication | "RL2: Fast Reinforcement Learning via Slow Reinforcement Learning", a paper on reinforcement learning, is first submitted to the ArXiv. It seeks to bridge the gap in number of trials between the machine learning process which requires a huge number of trials, and animals which can learn new tasks in just a few trials, benefiting from their prior knowledge about the world.[7] |
- ↑ Miyato, Takeru; Dai, Andrew M.; Goodfellow, Ian. "Adversarial Training Methods for Semi-Supervised Text Classification". arxiv.org. Retrieved 28 March 2020.
- ↑ "[1606.06565] Concrete Problems in AI Safety". June 21, 2016. Retrieved July 25, 2017.
- ↑ Christiano, Paul; Shah, Zain; Mordatch, Igor; Schneider, Jonas; Blackwell, Trevor; Tobin, Joshua; Abbeel, Pieter; Zaremba, Wojciech. "Transfer from Simulation to Real World through Learning Deep Inverse Dynamics Model". arxiv.org. Retrieved 28 March 2020.
- ↑ Papernot, Nicolas; Abadi, Martín; Erlingsson, Úlfar; Goodfellow, Ian; Talwar, Kunal. "Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data". arxiv.org. Retrieved 28 March 2020.
- ↑ Price, Eric; Zaremba, Wojciech; Sutskever, Ilya. "Extensions and Limitations of the Neural GPU". arxiv.org. Retrieved 28 March 2020.
- ↑ Chen, Xi; Kingma, Diederik P.; Salimans, Tim; Duan, Yan; Dhariwal, Prafulla; Schulman, John; Sutskever, Ilya; Abbeel, Pieter. "Variational Lossy Autoencoder". arxiv.org.
- ↑ Duan, Yan; Schulman, John; Chen, Xi; Bartlett, Peter L.; Sutskever, Ilya; Abbeel, Pieter. "RL2: Fast Reinforcement Learning via Slow Reinforcement Learning". arxiv.org. Retrieved 28 March 2020.