Timeline of hematology: Difference between revisions

Sebastian (talk | contribs)
No edit summary
Sebastian (talk | contribs)
No edit summary
 
(92 intermediate revisions by 2 users not shown)
Line 1: Line 1:
This is a '''timeline of {{w|hematology}}''', listing important events in the development of the field.
This is a '''timeline of {{w|hematology}}''', listing important events in the development of the field. Events related to {{w|transfusion}} are described in the [[Timeline of transfusion medicine]].


==Big picture==
==Big picture==
Line 6: Line 6:
! Time period !! Development summary  
! Time period !! Development summary  
|-
|-
| Ancient history || “Blood letting” instruments are used is Ancient Egypt.<ref name="Timeline of Major Hematology Landmarks">{{cite web |title=Timeline of Major Hematology Landmarks |url=https://www.scribd.com/document/129934714/Timeline-of-Major-Hematology-Landmarks |website=scribd.com |accessdate=20 September 2018}}</ref>
| Ancient history || “Blood letting” instruments are used in Ancient Egypt.<ref name="Timeline of Major Hematology Landmarks">{{cite web |title=Timeline of Major Hematology Landmarks |url=https://www.scribd.com/document/129934714/Timeline-of-Major-Hematology-Landmarks |website=scribd.com |accessdate=20 September 2018}}</ref>
|-
|-
| 17th century || Dutch microscopist {{w|Antonie van Leeuwenhoek}}, using a primitive, single-lens microscope, already observes red blood cells (erythrocytes) and compared their size with that of a grain of sand.<ref name="Hematologyvv">{{cite web |title=Hematology |url=https://www.britannica.com/science/hematology |website=britannica.com |accessdate=7 September 2018}}</ref>
| 17th century || Dutch microscopist {{w|Antonie van Leeuwenhoek}}, using a primitive, single-lens microscope, already observes red blood cells (erythrocytes) and compared their size with that of a grain of sand.<ref name="Hematologyvv">{{cite web |title=Hematology |url=https://www.britannica.com/science/hematology |website=britannica.com |accessdate=7 September 2018}}</ref>
Line 14: Line 14:
| 19th century || Bone marrow is recognized as the site of blood-cell formation in the 19th century, along with the first clinical descriptions of pernicious {{w|anemia}}, {{w|leukemia}}, and a number of other disorders of the blood.<ref name="Hematologyvv"/>
| 19th century || Bone marrow is recognized as the site of blood-cell formation in the 19th century, along with the first clinical descriptions of pernicious {{w|anemia}}, {{w|leukemia}}, and a number of other disorders of the blood.<ref name="Hematologyvv"/>
|-
|-
| 20th century || The discovery of the ABO blood group system in the first quarter of the 20th century makes possible the transfusion of blood from one person to another without the serious ill effects that ensue when incompatible blood is given. The study of the blood disease anemia gains impetus from the introduction of the hematocrit, an apparatus for determining the volume of red blood cells as compared with the volume of plasma, and the introduction in 1932 of a simple method of measuring the volume and {{w|hemoglobin}}. After World War II, the field of hematology broadens.<ref name="Hematologyvv"/> In the 1950s, plastic intra venous tubing replaces rubber tubing.<ref name="Textbook of Critical Care E-Book"/> In the 1970s, the combination of several observational studies identifying a possible role for prophylactic platelet transfusion in hypoproliferative {{w|thrombocytopenia}} and the discovery that platelets are best stored at room temperature with gentle agitation to preserve function allow for the proliferation of platelet transfusions as part of standard management of patients receiving {{w|chemotherapy}}.<ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> In the 1980s, the emergence of {{w|HIV}} renews impetus for development of infection-safe blood substitutes.<ref name="pmid11834811">{{cite journal |author=Squires JE |title=Artificial blood |journal = [[w:Science (journal)|Science]] |volume=295 |issue=5557 |pages=1002–5 |year=2002 |pmid=11834811 |doi=10.1126/science.1068443 |url=http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=11834811}}</ref>
| 20th century || The discovery by {{w|Karl Landsteiner}} of the {{w|ABO blood group system}} in the first quarter of the 20th century makes possible the transfusion of blood from one person to another without the serious ill effects that ensue when incompatible blood is given. The study of the blood disease anemia gains impetus from the introduction of the hematocrit, an apparatus for determining the volume of red blood cells as compared with the volume of plasma, and the introduction in 1932 of a simple method of measuring the volume and {{w|hemoglobin}}. After World War II, the field of hematology broadens.<ref name="Hematologyvv"/> In the 1950s, plastic intra venous tubing replaces rubber tubing.<ref name="Textbook of Critical Care E-Book">{{cite book |last1=Vincent |first1=Jean-Louis |last2=Abraham |first2=Edward |last3=Kochanek |first3=Patrick |last4=Moore |first4=Frederick A. |last5=Fink |first5=Mitchell P. |title=Textbook of Critical Care E-Book |url=https://books.google.com.ar/books?id=uAl68tCzm5IC&pg=PA1395&dq=%22in+1818%22+%22James+Blundell%22&hl=en&sa=X&ved=0ahUKEwjMmp32pdbdAhWFf5AKHU32CewQ6AEIQDAE#v=onepage&q=%22in%201818%22%20%22James%20Blundell%22&f=false}}</ref><ref name="Timeline of Major Hematology Landmarks"/> The 1960s is the decade in which most of the modern understanding of platelet funcion is initiated.<ref name="Books on Google Play Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> In the 1970s, the combination of several observational studies identifying a possible role for prophylactic platelet transfusion in hypoproliferative {{w|thrombocytopenia}} and the discovery that platelets are best stored at room temperature with gentle agitation to preserve function allow for the proliferation of platelet transfusions as part of standard management of patients receiving {{w|chemotherapy}}.<ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update">{{cite book |title=Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update |edition=Paolo Gresele, Neal S. Kleiman, José A. Lopez, Clive P. Page |url=https://books.google.com.ar/books?id=W9FNDgAAQBAJ&pg=PA1391&dq=%22in+1818%22+%22James+Blundell%22&hl=en&sa=X&ved=0ahUKEwjMmp32pdbdAhWFf5AKHU32CewQ6AEIMzAC#v=onepage&q=%22in%201818%22%20%22James%20Blundell%22&f=false}}</ref> In the 1980s, the emergence of {{w|HIV}} renews impetus for development of infection-safe blood substitutes.<ref name="pmid11834811">{{cite journal |author=Squires JE |title=Artificial blood |journal = [[w:Science (journal)|Science]] |volume=295 |issue=5557 |pages=1002–5 |year=2002 |pmid=11834811 |doi=10.1126/science.1068443 |url=http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=11834811}}</ref>
|-
|-
|}
|}


==Full timeline==
==Full timeline==
Line 25: Line 26:
| 3255 BC || || The oldest intact red blood cells ever discovered are found in {{w|Ötzi}}, a natural mummy of a man who died around that time.<ref>{{cite web |title='Iceman' Mummy Holds World's Oldest Blood Cells |url=https://www.livescience.com/20030-ice-mummy-oldest-blood-cells.html |website=livescience.com |accessdate=20 September 2018}}</ref> ||
| 3255 BC || || The oldest intact red blood cells ever discovered are found in {{w|Ötzi}}, a natural mummy of a man who died around that time.<ref>{{cite web |title='Iceman' Mummy Holds World's Oldest Blood Cells |url=https://www.livescience.com/20030-ice-mummy-oldest-blood-cells.html |website=livescience.com |accessdate=20 September 2018}}</ref> ||
|-
|-
| 460 BC – 377 BC || || Greek physician {{w|Hippocrates}} teaches the humoral theory, a hypothetical system to explain illness in which balance equals health, and excess or deficiency equals illness.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|Greece}}
| 460 BC – 377 BC || Field development || Greek physician {{w|Hippocrates}} teaches the humoral theory, a hypothetical system to explain illness in which balance equals health, and excess or deficiency equals illness.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|Greece}}
|-
|-
| 1616 || || English physician {{w|William Harvey}} discovers blood pathways. Since then many people try to use fluids such as beer, urine, milk, and non-human animal blood as blood substitute.<ref>{{Cite journal | last1 = Sarkar | first1 = S. | title = Artificial Blood | doi = 10.4103/0972-5229.43685 | journal = Indian Journal of Critical Care Medicine | volume = 12 | issue = 3 | pages = 140–144 | year = 2008 | pmid =  19742251| pmc =2738310 }}</ref> || {{w|United Kingdom}}
| 1616 || Field development || English physician {{w|William Harvey}} discovers blood pathways. Since then many people try to use fluids such as beer, urine, milk, and non-human animal blood as blood substitute.<ref>{{Cite journal | last1 = Sarkar | first1 = S. | title = Artificial Blood | doi = 10.4103/0972-5229.43685 | journal = Indian Journal of Critical Care Medicine | volume = 12 | issue = 3 | pages = 140–144 | year = 2008 | pmid =  19742251| pmc =2738310 }}</ref> || {{w|United Kingdom}}
|-
|-
| 1628 || || English physician {{w|William Harvey}} introduces the controversial of circulation.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|United Kingdom}}
| 1628 || Field development || English physician {{w|William Harvey}} publishes ''Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus'' (Movement of the Heart and the Blood in Animals), which demonstrates the concept of blood circulation.<ref name="Books on Google Play Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> || {{w|United Kingdom}}
|-
|-
| 1642 || || Dutch scientist {{w|Antonie van Leeuwenhoek}} constructs a microscope and distinguishes {{w|blood cell}}s.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|Netherlands}}
| 1642 || Scientific development || Dutch scientist {{w|Antonie van Leeuwenhoek}} constructs a microscope and distinguishes {{w|blood cell}}s.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|Netherlands}}
|-
|-
| 1656 || || English anatomist {{w|Christopher Wren}} gives the first intravenous injection in animals.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|United Kingdom}}
| 1656 || Field development || English anatomist {{w|Christopher Wren}} gives the first intravenous injection in animals.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|United Kingdom}}
|-
|-
| 1658 || || Dutch biologist Jan Swammerdam first describes red blood cells by means of the use of an early microscope to study the blood of a frog. ||
| 1658 || Field development || Dutch biologist Jan Swammerdam first describes red blood cells by means of the use of an early microscope to study the blood of a frog. ||
|-
|-
| 1662 || || J. C. Major gives the first intravenous injection in humans.<ref name="Timeline of Major Hematology Landmarks"/> ||
| 1662 || Field development || J. C. Major gives the first intravenous injection in humans.<ref name="Timeline of Major Hematology Landmarks"/> ||
|-
|-
| 1665 || || English physician [[w:Richard Lower (physician)|Richard Lower]] performs the first documented blood transfusionusing dogs and notes a color difference between veins and arteries.<ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/><ref name="Timeline of Major Hematology Landmarks"/> || {{w|United Kingdom}}
| 1665 || Field development || English physician [[w:Richard Lower (physician)|Richard Lower]] performs the first documented blood transfusion using dogs and notes a color difference between veins and arteries.<ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/><ref name="Timeline of Major Hematology Landmarks"/> || {{w|United Kingdom}}
|-
|-
| 1667 || || French physician {{w|Jean-Baptiste Denys}} and [[w:Richard Lower (physician)|Richard Lower]] separately report giving the first human blood transfusion with blood fromlambs. Within 10 years, transfusing the blood of animals to humans becomes prohibited by law, delaying transfusion advances for about 150 years.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|France}}, {{w|United Kingdom}}
| 1666 || Field development || Italian physician {{w|Marcello Malpighi}} notices that fiber filaments remain in a blood clot after it is thoroughly washed.<ref name="=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication"/> || {{w|Italy}}
|-
|-
| 1674 || || {{w|Anton van Leeuwenhoek}} provides a more precise description of red blood cells, even approximating their size, "25,000 times smaller than a fine grain of sand". || {{w|Netherlands}}
| 1667 || Field development || French physician {{w|Jean-Baptiste Denys}} and [[w:Richard Lower (physician)|Richard Lower]] separately report giving the first human blood transfusion with blood fromlambs. Within 10 years, transfusing the blood of animals to humans becomes prohibited by law, delaying transfusion advances for about 150 years.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|France}}, {{w|United Kingdom}}
|-
| 1674 || Field development || Pioneer microscopist {{w|Anton van Leeuwenhoek}} writes his own description of human red blood cells.<ref name="Discovery of Red Blood Cells">{{cite web |title=Discovery of Red Blood Cells |url=https://www.med-ed.virginia.edu/courses/cell/resources/blooddisc.htm |website=med-ed.virginia.edu |accessdate=5 October 2018}}</ref> || {{w|Netherlands}}
|-
| 1675 || Field development || {{w|Anton van Leeuwenhoek}} makes the remarkable discovery that "those sanguineous globules in a healthy body must be very flexible and pliant, if they are to pass through the small capillary veins and arteries, and that in their passage they change into an oval figure, reassuming their roundness when they come into a larger room."<ref name="Discovery of Red Blood Cells"/> || {{w|Netherlands}}
|-
|-
| 1770 || Field development || British surgeon [[w:William Hewson (surgeon)|William Hewson]] describes leukocytes and some essential clottingfactors. Hewson becomes known as “the father of hematology.”<ref name="Timeline of Major Hematology Landmarks"/> ||
| 1770 || Field development || British surgeon [[w:William Hewson (surgeon)|William Hewson]] describes leukocytes and some essential clottingfactors. Hewson becomes known as “the father of hematology.”<ref name="Timeline of Major Hematology Landmarks"/> ||
|-
| 1771 || Literature || [[w:William Hewson (surgeon)|William Hewson]] publishes ''Experimental Inquiry into the Properties of the Blood''.<ref name="Books on Google Play Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> || {{w|United Kingdom}}
|-
|-
| 1795 || Field development || American physician {{w|Philip Syng Physick}} claims to perform the first human-to-human blood transfusion, although he does not publish this information.<ref name="Timeline of Major Hematology Landmarks"/> ||
| 1795 || Field development || American physician {{w|Philip Syng Physick}} claims to perform the first human-to-human blood transfusion, although he does not publish this information.<ref name="Timeline of Major Hematology Landmarks"/> ||
|-
|-
| 1818 || Field development || James Blundell completes the first successful human blood transfusion in a series of eight women to manage postpartum hemorrhage. Between 1825 and 1830, Blundell performs ten transfusions, five of which prove beneficial to his patients, and publishes these results. He also devises various instruments for performing transfusions and proposes rational indications.<ref>{{cite book |last1=Simmers |first1=Louise M |last2=Simmers-Nartker |first2=Karen |last3=Simmers-Kobelak |first3=Sharon |title=DHO Health Science Updated |url=https://books.google.com.ar/books?id=ULsaCgAAQBAJ&pg=PA11&dq=%22in+1818%22+%22James+Blundell%22&hl=en&sa=X&ved=0ahUKEwjMmp32pdbdAhWFf5AKHU32CewQ6AEIODAD#v=onepage&q=%22in%201818%22%20%22James%20Blundell%22&f=false}}</ref><ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update">{{cite book |title=Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update |edition=Paolo Gresele, Neal S. Kleiman, José A. Lopez, Clive P. Page |url=https://books.google.com.ar/books?id=W9FNDgAAQBAJ&pg=PA1391&dq=%22in+1818%22+%22James+Blundell%22&hl=en&sa=X&ved=0ahUKEwjMmp32pdbdAhWFf5AKHU32CewQ6AEIMzAC#v=onepage&q=%22in%201818%22%20%22James%20Blundell%22&f=false}}</ref><ref name="Textbook of Critical Care E-Book">{{cite book |last1=Vincent |first1=Jean-Louis |last2=Abraham |first2=Edward |last3=Kochanek |first3=Patrick |last4=Moore |first4=Frederick A. |last5=Fink |first5=Mitchell P. |title=Textbook of Critical Care E-Book |url=https://books.google.com.ar/books?id=uAl68tCzm5IC&pg=PA1395&dq=%22in+1818%22+%22James+Blundell%22&hl=en&sa=X&ved=0ahUKEwjMmp32pdbdAhWFf5AKHU32CewQ6AEIQDAE#v=onepage&q=%22in%201818%22%20%22James%20Blundell%22&f=false}}</ref><ref name="Timeline of Major Hematology Landmarks"/> ||
| 1821 – 1902 || Field development || German physician {{w|Rudolf Virchow}} disproves a prominent view that {{w|phlebitis}} (inflammation of a vein) causes most diseases. Virchow demonstrates that masses in the blood vessels result from “{{w|thrombosis}}” (his term) and that portions of a thrombus could become detached to form an “{{w|embolus}}” (also his term).<ref>{{cite web |title=Rudolf Virchow |url=https://www.britannica.com/biography/Rudolf-Virchow |website=britannica.com |accessdate=3 October 2018}}</ref> || {{w|Germany}}
|-
|-
| 1821 – 1902 || Field development || "Rudolph Virchow, during a long and illustrious career, demonstrates the importance of fibrin in the blood coagulation process, coins the terms embolism and thrombosis, identifies the disease leukemia, and theorizes that leukocytes are made in response to inflammation." ||
| 1827 || Literature || Amateur British opticist {{w|Joseph Jackson Lister}} and fellow Quaker Dr {{w|Thomas Hodgkin}} publish ''Notice of some Microscopic Observations of the Blood and Animal Tissues''.<ref name="Books on Google Play Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> || {{w|United Kingdom}}
|-
|-
| 1830 || || The gold-plated steel needle for intravenous use is invented.<ref name="Textbook of Critical Care E-Book"/> ||
| 1830 || Instrumental || The gold-plated steel needle for intravenous use is invented.<ref name="Textbook of Critical Care E-Book"/> ||
|-
|-
| 1840 || Field development || English surgeon {{w|Samuel Armstrong Lane}} performs the first successful whole blood transfusion to treat {{w|hemophilia}}.<ref name="Inventions & Discoveries">{{cite book |last1=BPI |title=Inventions & Discoveries |url=https://books.google.com.ar/books?id=FP45DAAAQBAJ&pg=PA10&dq=%22in+1840%22+Samuel+Armstrong+Lane&hl=en&sa=X&ved=0ahUKEwjRo_CR2dbdAhWP3VMKHbFJD1cQ6AEIMTAC#v=onepage&q=%22in%201840%22%20Samuel%20Armstrong%20Lane&f=false}}</ref><ref>{{cite book |title=Hemolytic Anemia |url=https://books.google.com.ar/books?id=oz8inTVuxngC&pg=PA166&dq=%22in+1840%22+Samuel+Armstrong+Lane&hl=en&sa=X&ved=0ahUKEwjRo_CR2dbdAhWP3VMKHbFJD1cQ6AEILTAB#v=onepage&q=%22in%201840%22%20Samuel%20Armstrong%20Lane&f=false}}</ref><ref>{{cite book |last1=Madbak |first1=Firas |title=Bridge Across the Abyss: Medical Myths and Misconceptions |url=https://books.google.com.ar/books?id=pLKacxgd05kC&pg=PA22&dq=%22in+1840%22+Samuel+Armstrong+Lane&hl=en&sa=X&ved=0ahUKEwjRo_CR2dbdAhWP3VMKHbFJD1cQ6AEIKDAA#v=onepage&q=%22in%201840%22%20Samuel%20Armstrong%20Lane&f=false}}</ref><ref>{{cite book |last1=Chang |first1=Anne |title=Magill's Medical Guide: Down syndrome-Laser use in surgery |url=https://books.google.com.ar/books?id=kuQ6AQAAIAAJ&q=%22in+1840%22+Samuel+Armstrong+Lane&dq=%22in+1840%22+Samuel+Armstrong+Lane&hl=en&sa=X&ved=0ahUKEwjRo_CR2dbdAhWP3VMKHbFJD1cQ6AEIPDAE}}</ref> || {{w|United Kingdom}}
| 1840 || Field development || English surgeon {{w|Samuel Armstrong Lane}} performs the first successful whole blood transfusion to treat {{w|hemophilia}}.<ref name="Inventions & Discoveries">{{cite book |last1=BPI |title=Inventions & Discoveries |url=https://books.google.com.ar/books?id=FP45DAAAQBAJ&pg=PA10&dq=%22in+1840%22+Samuel+Armstrong+Lane&hl=en&sa=X&ved=0ahUKEwjRo_CR2dbdAhWP3VMKHbFJD1cQ6AEIMTAC#v=onepage&q=%22in%201840%22%20Samuel%20Armstrong%20Lane&f=false}}</ref><ref>{{cite book |title=Hemolytic Anemia |url=https://books.google.com.ar/books?id=oz8inTVuxngC&pg=PA166&dq=%22in+1840%22+Samuel+Armstrong+Lane&hl=en&sa=X&ved=0ahUKEwjRo_CR2dbdAhWP3VMKHbFJD1cQ6AEILTAB#v=onepage&q=%22in%201840%22%20Samuel%20Armstrong%20Lane&f=false}}</ref><ref>{{cite book |last1=Madbak |first1=Firas |title=Bridge Across the Abyss: Medical Myths and Misconceptions |url=https://books.google.com.ar/books?id=pLKacxgd05kC&pg=PA22&dq=%22in+1840%22+Samuel+Armstrong+Lane&hl=en&sa=X&ved=0ahUKEwjRo_CR2dbdAhWP3VMKHbFJD1cQ6AEIKDAA#v=onepage&q=%22in%201840%22%20Samuel%20Armstrong%20Lane&f=false}}</ref><ref>{{cite book |last1=Chang |first1=Anne |title=Magill's Medical Guide: Down syndrome-Laser use in surgery |url=https://books.google.com.ar/books?id=kuQ6AQAAIAAJ&q=%22in+1840%22+Samuel+Armstrong+Lane&dq=%22in+1840%22+Samuel+Armstrong+Lane&hl=en&sa=X&ved=0ahUKEwjRo_CR2dbdAhWP3VMKHbFJD1cQ6AEIPDAE}}</ref> || {{w|United Kingdom}}
|-
|-
| 1842 || Field development || Alexandre Donne identifies platelets.<ref>{{cite book |title=Sir William Osler: An Annotated Bibliography with Illustrations |edition=Richard L. Golden, Charles G. Roland |url=https://books.google.com.ar/books?id=3Z33qBcbP6MC&pg=PA3&dq=%22in+1842%22+Alexandre+Donne+%22platelets%22&hl=en&sa=X&ved=0ahUKEwi6s_GB2NbdAhVK3FMKHXGsAYAQ6AEIKDAA#v=onepage&q=%22in%201842%22%20Alexandre%20Donne%20%22platelets%22&f=false}}</ref><ref>{{cite book |title=Hematology |url=https://books.google.com.ar/books?id=j-xrAAAAMAAJ&q=%22in+1842%22+Alexandre+Donne+%22platelets%22&dq=%22in+1842%22+Alexandre+Donne+%22platelets%22&hl=en&sa=X&ved=0ahUKEwi6s_GB2NbdAhVK3FMKHXGsAYAQ6AEILTAB}}</ref> ||
| 1840s || Field development || English anatomist {{w|George Gulliver}} publishes early illustrations of {{w|platelet}}s.<ref name="Books on Google Play Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> || {{w|United Kingdom}}
|-
| 1842 || Field development || French microscopist {{w|Alexandre Donné}} identifies {{w|platelet}}s.<ref>{{cite book |title=Sir William Osler: An Annotated Bibliography with Illustrations |edition=Richard L. Golden, Charles G. Roland |url=https://books.google.com.ar/books?id=3Z33qBcbP6MC&pg=PA3&dq=%22in+1842%22+Alexandre+Donne+%22platelets%22&hl=en&sa=X&ved=0ahUKEwi6s_GB2NbdAhVK3FMKHXGsAYAQ6AEIKDAA#v=onepage&q=%22in%201842%22%20Alexandre%20Donne%20%22platelets%22&f=false}}</ref><ref>{{cite book |title=Hematology |url=https://books.google.com.ar/books?id=j-xrAAAAMAAJ&q=%22in+1842%22+Alexandre+Donne+%22platelets%22&dq=%22in+1842%22+Alexandre+Donne+%22platelets%22&hl=en&sa=X&ved=0ahUKEwi6s_GB2NbdAhVK3FMKHXGsAYAQ6AEILTAB}}</ref> ||
|-
| 1867 || Field development || British surgeon {{w|Joseph Lister}} uses antiseptics to control infection during transfusions.<ref name="Timeline of Major Hematology Landmarks"/> || {{w|United Kingdom}}
|-
|-
| 1867 || || "English surgeon Joseph Lister uses antiseptics to control infectionduring transfusions."<ref name="Timeline of Major Hematology Landmarks"/> ||
| 1875 || Field development || Zahn reports that an injured blood vessel is eventually plugged by a fibrin-associated white thrombus. This observation leads to the discovery that platelets are responsible for contributing fibrin in the blood coagulation process.<ref name="=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication"/> ||
|-
|-
| 1877 || || "Paul Ehrlich develops techniques to stain blood cells to improve microscopic visualization."<ref name="The History of Hematology and Related Sciences">{{cite web |title=The History of Hematology and Related Sciences |url=https://pharmaceuticalintelligence.com/2014/12/05/the-history-of-hematology-and-related-sciences/ |website=pharmaceuticalintelligence.com |accessdate=20 September 2018}}</ref> ||
| 1877 || Field development || German-Jewish physician {{w|Paul Ehrlich}} develops techniques to stain blood cells to improve microscopic visualization.<ref name="The History of Hematology and Related Sciences">{{cite web |title=The History of Hematology and Related Sciences |url=https://pharmaceuticalintelligence.com/2014/12/05/the-history-of-hematology-and-related-sciences/ |website=pharmaceuticalintelligence.com |accessdate=20 September 2018}}</ref> || {{w|Germany}}
|-
|-
| 1897 || || "The Diseases of Infancy and Childhood contains a 20-page chapter on diseases of the blood and is the first American pediatric medical textbook to provide significant hematologic information."<ref name="The History of Hematology and Related Sciences"/> ||
| 1882 || Field development || Italian medical researcher {{w|Giulio Bizzozero}} describes blood {{w|platelet}}s.<ref name="Milestones in Antiplatelet Therapy">{{cite web |title=Milestones in Antiplatelet Therapy |url=http://www.hematology.org/About/History/50-Years/1514.aspx |website=hematology.org |accessdate=4 October 2018}}</ref><ref name="Books on Google Play Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update">{{cite book |title=Books on Google Play Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update |edition=Paolo Gresele, Neal S. Kleiman, José A. Lopez, Clive P. Page |url=https://books.google.com.ar/books?id=W9FNDgAAQBAJ&pg=PA5&dq=%22in+1882%22+Giulio+Bizzozero+describes+blood+platelets&hl=en&sa=X&ved=0ahUKEwjOj7jItu7dAhXBPpAKHR8iBp8Q6AEIKDAA#v=onepage&q=%22in%201882%22%20Giulio%20Bizzozero%20describes%20blood%20platelets&f=false}}</ref> || {{w|Italy}}
|-
|-
| 1901 || Field development || Austrian biologist {{w|Karl Landsteiner}} and his associates define the different {{w|blood group}}s: A, B, AB, and O.<ref>{{cite book |last1=DK |title=1000 Inventions and Discoveries |url=https://books.google.com.ar/books?id=IztIBQAAQBAJ&pg=PA173&dq=%22in+1901%22+%22karl+landsteiner%22&hl=en&sa=X&ved=0ahUKEwjM6OWh3andAhVCf5AKHTLVDoQQ6AEIKDAA#v=onepage&q=%22in%201901%22%20%22karl%20landsteiner%22&f=false |ref=}}</ref><ref>{{cite book |last1=Van Luven |first1=Lynne |last2=Page |first2=Kathy |title=In the Flesh: Twenty Writers Explore the Body |url=https://books.google.com.ar/books?id=U-Y-9hvgRRYC&pg=PT194&dq=%22in+1901%22+%22karl+landsteiner%22&hl=en&sa=X&ved=0ahUKEwjM6OWh3andAhVCf5AKHTLVDoQQ6AEIPzAE#v=onepage&q=%22in%201901%22%20%22karl%20landsteiner%22&f=false}}</ref><ref>{{cite book |last1=Hillyer |first1=Christopher D. |title=Blood Banking and Transfusion Medicine: Basic Principles & Practice |url=https://books.google.com.ar/books?id=3QwXx_enKbcC&pg=PT26&dq=%22in+1901%22+%22karl+landsteiner%22&hl=en&sa=X&ved=0ahUKEwjM6OWh3andAhVCf5AKHTLVDoQQ6AEINDAC#v=onepage&q=%22in%201901%22%20%22karl%20landsteiner%22&f=false}}</ref><ref name="What is Hematology?">{{cite web |title=What is Hematology? - Definition & History |url=https://study.com/academy/lesson/what-is-hematology-definition-history.html |website=study.com |accessdate=7 September 2018}}</ref> ||
| 1897 || Literature || American pediatrician {{w|Luther Emmett Holt}} publishes ''The Diseases of Infancy and Childhood'', which includes a 20-page chapter on diseases of the blood and is the first American pediatric medical textbook to provide significant hematologic information.<ref name="The History of Hematology and Related Sciences"/><ref>{{cite web |title=The diseases of infancy and childhood : for the use of students and practitioners of medicine / by L. Emmett Holt. |url=https://catalog.hathitrust.org/Record/100632876 |website=catalog.hathitrust.org |accessdate=3 October 2018}}</ref> || {{w|United States}}
|-
| 1901 || Field development || Austrian biologist {{w|Karl Landsteiner}} and his associates discover the {{w|ABO blood group system}}, and define the different {{w|blood group}}s: A, B, AB, and O. Such names refer to the different kinds of {{w|antigen}}s on the surface of the {{w|red blood cell}}.<ref>{{cite book |last1=DK |title=1000 Inventions and Discoveries |url=https://books.google.com.ar/books?id=IztIBQAAQBAJ&pg=PA173&dq=%22in+1901%22+%22karl+landsteiner%22&hl=en&sa=X&ved=0ahUKEwjM6OWh3andAhVCf5AKHTLVDoQQ6AEIKDAA#v=onepage&q=%22in%201901%22%20%22karl%20landsteiner%22&f=false |ref=}}</ref><ref>{{cite book |last1=Van Luven |first1=Lynne |last2=Page |first2=Kathy |title=In the Flesh: Twenty Writers Explore the Body |url=https://books.google.com.ar/books?id=U-Y-9hvgRRYC&pg=PT194&dq=%22in+1901%22+%22karl+landsteiner%22&hl=en&sa=X&ved=0ahUKEwjM6OWh3andAhVCf5AKHTLVDoQQ6AEIPzAE#v=onepage&q=%22in%201901%22%20%22karl%20landsteiner%22&f=false}}</ref><ref>{{cite book |last1=Hillyer |first1=Christopher D. |title=Blood Banking and Transfusion Medicine: Basic Principles & Practice |url=https://books.google.com.ar/books?id=3QwXx_enKbcC&pg=PT26&dq=%22in+1901%22+%22karl+landsteiner%22&hl=en&sa=X&ved=0ahUKEwjM6OWh3andAhVCf5AKHTLVDoQQ6AEINDAC#v=onepage&q=%22in%201901%22%20%22karl%20landsteiner%22&f=false}}</ref><ref name="What is Hematology?">{{cite web |title=What is Hematology? - Definition & History |url=https://study.com/academy/lesson/what-is-hematology-definition-history.html |website=study.com |accessdate=7 September 2018}}</ref> ||
|-
| 1902 || Field development || Alfred Decastello and Adriano Sturli add [[w:ABO blood group system|bloodtype]] AB to the classification system.<ref name="Milestones in Transfusion Medicine">{{cite web |title=Milestones in Transfusion Medicine |url=http://www.hematology.org/About/History/50-Years/1520.aspx |website=hematology.org |accessdate=4 October 2018}}</ref> ||
|-
|-
| 1904 || Literature || ''{{w|Folia Haematologica}}'' is established in {{w|Germany}}. It is the first hematology journal in the world.<ref name="Hematology in Japan: past, present and future"/>|| {{w|Germany}}
| 1904 || Literature || ''{{w|Folia Haematologica}}'' is established in {{w|Germany}}. It is the first hematology journal in the world.<ref name="Hematology in Japan: past, present and future"/>|| {{w|Germany}}
|-
|-
| 1907 || Field development || "Ludvig Hektoen suggests that the safety of transfusion might be improved by crossmatching blood between donors and patients to exclude incompatible mixtures. Reuben Ottenberg performs the first blood transfusion using blood typing and crossmatching in New York. Ottenberg also observes the Mendelian inheritance of blood groups and recognizes the “universal” utility of group O donors."<ref name="The History of Hematology and Related Sciences"/> ||
| 1906 || Field development || James Wright describes the bone marrow and megakaryocyte origin of {{w|platelets}}.<ref name="Books on Google Play Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> ||
|-
|-
| 1910 || Field development || The first clinical description of {{w|sickle cell disease}} is published. ||
| 1907 || Field development || American pathologist {{w|Ludvig Hektoen}} from {{w|Chicago}}, explains the significance of isoagglutinins in human blood and how the untoward reactions are related to them.<ref name="Hospital and community: studies in external relationships of the administrator">{{cite book |last1=Jackson |first1=Laura Gertrude |title=Hospital and community: studies in external relationships of the administrator |url=https://books.google.com.ar/books?id=75drAAAAMAAJ&q=%22in+1907%22+%22Ludvig+Hektoen%22&dq=%22in+1907%22+%22Ludvig+Hektoen%22&hl=en&sa=X&ved=0ahUKEwjn6PfWgtfdAhWMIpAKHZLwCuwQ6AEIRTAF}}</ref><ref name="The History of Hematology and Related Sciences"/> || {{w|United States}}
|-
|-
| 1910 || Field development || Transfusions are recognized as successful therapeutic hemostatic intervensions when Duke notes that they reduce the bleeding time.<ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> ||
| 1908 || Field development || American {{w|haematologist}} {{w|Reuben Ottenberg}} develops clinical methods for typing bloods.<ref name="Hospital and community: studies in external relationships of the administrator"/> || {{w|United States}}
|-
| 1910 || Field development || {{w|Sickle cell disease}} is first described.<ref>{{cite journal |title=Sickle cell disease: old discoveries, new concepts, and future promise |doi=10.1172/JCI30920 |pmid=17404610 |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838946/ |pmc=1838946}}</ref> ||
|-
| 1910 || Field development || Duke notes that transfusions reduce the bleeding time. After this, transfusions become recognized as successful therapeutic hemostatic intervensions.<ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> ||
|-
|-
| 1914 || Field development || American scientist, Richard Lewisohn, discovers that sodium citrate can be added to blood to stop it clotting.<ref>{{cite book |last1=Evans |first1=R. Paul |last2=Wilkinson |first2=Alf |title=WJEC Eduqas GCSE History: Changes in Health and Medicine in Britain, c.500 to the present day |url=https://books.google.com.ar/books?id=vFDmDQAAQBAJ&pg=PT256&lpg=PT256&dq=%22in+1914%22+Richard+Lewisohn+discovers+how+sodium+citrate+can+be+used+to+store+blood&source=bl&ots=IUL9WeoY7j&sig=9U2UKjSnFzbHphOwJMs5Yhd_Bxc&hl=en&sa=X&ved=2ahUKEwiRht7M4qndAhXEEZAKHUGvANEQ6AEwDnoECAQQAQ#v=onepage&q=%22in%201914%22%20Richard%20Lewisohn%20discovers%20how%20sodium%20citrate%20can%20be%20used%20to%20store%20blood&f=false}}</ref><ref name="What is Hematology?"/><ref name="The History of Hematology and Related Sciences"/> ||
| 1914 || Field development || American scientist, Richard Lewisohn, discovers that sodium citrate can be added to blood to stop it clotting.<ref>{{cite book |last1=Evans |first1=R. Paul |last2=Wilkinson |first2=Alf |title=WJEC Eduqas GCSE History: Changes in Health and Medicine in Britain, c.500 to the present day |url=https://books.google.com.ar/books?id=vFDmDQAAQBAJ&pg=PT256&lpg=PT256&dq=%22in+1914%22+Richard+Lewisohn+discovers+how+sodium+citrate+can+be+used+to+store+blood&source=bl&ots=IUL9WeoY7j&sig=9U2UKjSnFzbHphOwJMs5Yhd_Bxc&hl=en&sa=X&ved=2ahUKEwiRht7M4qndAhXEEZAKHUGvANEQ6AEwDnoECAQQAQ#v=onepage&q=%22in%201914%22%20Richard%20Lewisohn%20discovers%20how%20sodium%20citrate%20can%20be%20used%20to%20store%20blood&f=false}}</ref><ref name="What is Hematology?"/><ref name="The History of Hematology and Related Sciences"/> ||
Line 88: Line 107:
|-
|-
| 1925 || Field development || American pediatrician {{w|Thomas Benton Cooley}} describes a Mediterranean hematologic syndrome of anemia, {{w|erythroblastosis}}, skeletal disorders, and splenomegaly that is later called Cooley’s anemia and now {{w|thalassemia}}.<ref name="The History of Hematology and Related Sciences"/> ||
| 1925 || Field development || American pediatrician {{w|Thomas Benton Cooley}} describes a Mediterranean hematologic syndrome of anemia, {{w|erythroblastosis}}, skeletal disorders, and splenomegaly that is later called Cooley’s anemia and now {{w|thalassemia}}.<ref name="The History of Hematology and Related Sciences"/> ||
|-
| 1927 || Field development || The [[w:P antigen system|P blood group system]] is discovered.<ref>{{cite book |last1=Rudmann |first1=Sally V. |title=Textbook of Blood Banking and Transfusion Medicine |url=https://books.google.com.ar/books?id=dXdISwJQJFIC&pg=PA96&lpg=PA96&dq=Globoside+group+system+%22in+1900..2017%22&source=bl&ots=xjxTr1tPXp&sig=fXKERd_MjRQn1_b3loXnO3KqHeo&hl=en&sa=X&ved=2ahUKEwjRgMi3zPzdAhXDD5AKHRkKAB4Q6AEwAHoECAgQAQ#v=onepage&q=Globoside%20group%20system%20%22in%201900..2017%22&f=false}}</ref> It is considered among the major blood group systems.<ref name="OTHER BLOOD GROUP SYSTEMS"/> ||
|-
|-
| 1927 || Organization || The French Society of Hematology is formed. It is the first hematology organization in the world.<ref name="Hematology in Japan: past, present and future"/> || {{w|France}}
| 1927 || Organization || The French Society of Hematology is formed. It is the first hematology organization in the world.<ref name="Hematology in Japan: past, present and future"/> || {{w|France}}
Line 93: Line 114:
| 1927 || Literature || Journal La Sang is released in {{w|France}}.<ref name="Hematology in Japan: past, present and future"/> || {{w|France}}
| 1927 || Literature || Journal La Sang is released in {{w|France}}.<ref name="Hematology in Japan: past, present and future"/> || {{w|France}}
|-
|-
| 1932 || Field development || A simple method of measuring the volume and hemoglobin is introduced.<ref name="Hematologyvv"/> ||
| 1927 || Field development || {{w|Karl Landsteiner}} and {{w|Philip Levine}} discover the {{w|MNS antigen system}}, after immunizing {{w|rabbit}}s with human {{w|red blood cell}}s.<ref name="APC Essentials of Forensic Medicine and Toxicology"/> It is considered among the major blood group systems.<ref name="OTHER BLOOD GROUP SYSTEMS"/> ||
|-
| 1932 || Field development || A simple method of measuring the volume and {{w|hemoglobin}} is introduced.<ref name="Hematologyvv"/> ||
|-
|-
| 1933 || Field development || The formation of {{w|cryoprecipitate}} is first observed in relation to a patient with {{w|multiple myeloma}}.<ref name="Oxford Textbook of Vasculitis">{{cite book |title=Oxford Textbook of Vasculitis |edition=Gene V. Ball, Barri J. Fessler, S. Louis Bridges |url=https://books.google.com.ar/books?id=b9PQAgAAQBAJ&pg=PA547&lpg=PA547&dq=%22in+1954%22+cryoprecipitate&source=bl&ots=9UvcpSsTnR&sig=gb2G7F7-IxsFfRLK86pXHDglLGg&hl=en&sa=X&ved=2ahUKEwjwyuOSzdbdAhWFxpAKHaBXA18Q6AEwAHoECAEQAQ#v=onepage&q=%22in%201954%22%20cryoprecipitate&f=false}}</ref> ||
| 1933 || Field development || The formation of {{w|cryoprecipitate}} is first observed in relation to a patient with {{w|multiple myeloma}}.<ref name="Oxford Textbook of Vasculitis">{{cite book |title=Oxford Textbook of Vasculitis |edition=Gene V. Ball, Barri J. Fessler, S. Louis Bridges |url=https://books.google.com.ar/books?id=b9PQAgAAQBAJ&pg=PA547&lpg=PA547&dq=%22in+1954%22+cryoprecipitate&source=bl&ots=9UvcpSsTnR&sig=gb2G7F7-IxsFfRLK86pXHDglLGg&hl=en&sa=X&ved=2ahUKEwjwyuOSzdbdAhWFxpAKHaBXA18Q6AEwAHoECAEQAQ#v=onepage&q=%22in%201954%22%20cryoprecipitate&f=false}}</ref> ||
|-
| 1935 || Field development || Danish biochemist {{w|Carl Peter Henrik Dam}} finds that bleeding in chicks that developed an excessive bleeding disorder in response to synthetic diets, do not occur if their synthetic chow was replaced with one fortified with a specific vitamin. Dam labels this antihemorrhagic agent “{{w|vitamin K}}” and establishes its essential role in normal blood {{w|coagulation}}.<ref name="=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication"/> || {{w|Denmark}}
|-
|-
| 1936 || Organization || The World's first blood bank opens in {{w|Chicago}}.<ref>{{cite web |title=Blood Banking and Donation |url=http://www.hematology.org/Patients/Basics/Banking.aspx |website=hematology.org |accessdate=8 September 2018}}</ref><ref>{{cite web |title=THE TIMELINE: BLOOD DONATION |url=https://www.independent.co.uk/life-style/health-and-families/features/the-timeline-blood-donation-2297965.html |website=independent.co.uk |accessdate=8 September 2018}}</ref><ref name="What is Hematology?"/> || {{w|United States}}
| 1936 || Organization || The World's first blood bank opens in {{w|Chicago}}.<ref>{{cite web |title=Blood Banking and Donation |url=http://www.hematology.org/Patients/Basics/Banking.aspx |website=hematology.org |accessdate=8 September 2018}}</ref><ref>{{cite web |title=THE TIMELINE: BLOOD DONATION |url=https://www.independent.co.uk/life-style/health-and-families/features/the-timeline-blood-donation-2297965.html |website=independent.co.uk |accessdate=8 September 2018}}</ref><ref name="What is Hematology?"/> || {{w|United States}}
|-
|-
| 1936 || Field development || American hematologist John H. Lawrence of the {{w|University of California, Berkeley}} introduces phosphorus-32 for the treatment of {{w|leukemia}}.<ref>{{cite book |last1=Marks |first1=Geoffrey |last2=Beatty |first2=William K. |title=The Precious Metals of Medicine |url=https://books.google.com.ar/books?id=QO5sAAAAMAAJ&q=%22in+1936%22+John+Lawrence+uses+phosphorus-32+to+treat+leukaemia&dq=%22in+1936%22+John+Lawrence+uses+phosphorus-32+to+treat+leukaemia&hl=en&sa=X&ved=0ahUKEwiP-JPz47jdAhWMHpAKHQNECI4Q6AEIMjAC}}</ref><ref>{{cite book |last1=Oreskes |first1=Naomi |last2=Krige |first2=John |title=Science and Technology in the Global Cold War |url=https://books.google.com.ar/books?id=FjMqBQAAQBAJ&pg=PA37&dq=%22in+1936%22+John+Lawrence+uses+phosphorus-32+to+treat+leukaemia&hl=en&sa=X&ved=0ahUKEwiP-JPz47jdAhWMHpAKHQNECI4Q6AEIKDAA#v=onepage&q=%22in%201936%22%20John%20Lawrence%20uses%20phosphorus-32%20to%20treat%20leukaemia&f=false}}</ref><ref>{{cite book |title=Positron Emission Tomography: Basic Sciences |edition=Dale L. Bailey, David W. Townsend, Peter E. Valk, Michael N. Maisey |url=https://books.google.com.ar/books?id=svliBnNd2LcC&pg=PR6&dq=%22in+1936%22+John+Lawrence+uses+phosphorus-32+to+treat+leukaemia&hl=en&sa=X&ved=0ahUKEwiP-JPz47jdAhWMHpAKHQNECI4Q6AEILTAB#v=onepage&q=%22in%201936%22%20John%20Lawrence%20uses%20phosphorus-32%20to%20treat%20leukaemia&f=false}}</ref> || {{w|United States}}
| 1936 || Field development || American hematologist {{w|John H. Lawrence}} of the {{w|University of California, Berkeley}} introduces phosphorus-32 for the treatment of {{w|leukemia}}.<ref>{{cite book |last1=Marks |first1=Geoffrey |last2=Beatty |first2=William K. |title=The Precious Metals of Medicine |url=https://books.google.com.ar/books?id=QO5sAAAAMAAJ&q=%22in+1936%22+John+Lawrence+uses+phosphorus-32+to+treat+leukaemia&dq=%22in+1936%22+John+Lawrence+uses+phosphorus-32+to+treat+leukaemia&hl=en&sa=X&ved=0ahUKEwiP-JPz47jdAhWMHpAKHQNECI4Q6AEIMjAC}}</ref><ref>{{cite book |last1=Oreskes |first1=Naomi |last2=Krige |first2=John |title=Science and Technology in the Global Cold War |url=https://books.google.com.ar/books?id=FjMqBQAAQBAJ&pg=PA37&dq=%22in+1936%22+John+Lawrence+uses+phosphorus-32+to+treat+leukaemia&hl=en&sa=X&ved=0ahUKEwiP-JPz47jdAhWMHpAKHQNECI4Q6AEIKDAA#v=onepage&q=%22in%201936%22%20John%20Lawrence%20uses%20phosphorus-32%20to%20treat%20leukaemia&f=false}}</ref><ref>{{cite book |title=Positron Emission Tomography: Basic Sciences |edition=Dale L. Bailey, David W. Townsend, Peter E. Valk, Michael N. Maisey |url=https://books.google.com.ar/books?id=svliBnNd2LcC&pg=PR6&dq=%22in+1936%22+John+Lawrence+uses+phosphorus-32+to+treat+leukaemia&hl=en&sa=X&ved=0ahUKEwiP-JPz47jdAhWMHpAKHQNECI4Q6AEILTAB#v=onepage&q=%22in%201936%22%20John%20Lawrence%20uses%20phosphorus-32%20to%20treat%20leukaemia&f=false}}</ref> || {{w|United States}}
|-
|-
| 1937 || Organization || The Japanese Society of Hematology (JSH) is founded in {{w|Kyoto}}. It is the second hematology organization in the world.<ref>{{cite web |title=Japanese Society of Hematology (JSH) |url=https://www.ishworld.org/menu/49/japanese-society-of-hematology-jsh |website=ishworld.org |accessdate=7 September 2018}}</ref><ref name="Hematology in Japan: past, present and future">{{cite web |title=Hematology in Japan: past, present and future |url=https://www.healio.com/hematology-oncology/news/print/hemonc-today/%7B8ba22607-e605-4c5e-9929-ca6ced0c0b29%7D/hematology-in-japan-past-present-and-future |website=healio.com |accessdate=7 September 2018}}</ref> || {{w|Japan}}  
| 1937 || Organization || The Japanese Society of Hematology (JSH) is founded in {{w|Kyoto}}. It is the second hematology organization in the world.<ref>{{cite web |title=Japanese Society of Hematology (JSH) |url=https://www.ishworld.org/menu/49/japanese-society-of-hematology-jsh |website=ishworld.org |accessdate=7 September 2018}}</ref><ref name="Hematology in Japan: past, present and future">{{cite web |title=Hematology in Japan: past, present and future |url=https://www.healio.com/hematology-oncology/news/print/hemonc-today/%7B8ba22607-e605-4c5e-9929-ca6ced0c0b29%7D/hematology-in-japan-past-present-and-future |website=healio.com |accessdate=7 September 2018}}</ref> || {{w|Japan}}  
|-
| 1937 || Field development || {{w|Karl Landsteiner}} and {{w|Alexander S. Wiener}} identify the [[w:Rh blood group system|Rh factor]] (an abbreviation of "Rhesus factor") in blood.<ref name="Inventions & Discoveries"/> The Rhesus-system is the second most important blood group system after [[w:ABO blood group system|ABO]].<ref name="Blood groups systems">{{cite journal |last1=Mitra |first1=Ranadhir |last2=Mishra |first2=Nitasha |last3=Rath |first3=Girija Prasad |title=Blood groups systems |pmid=25535412 |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260296/ |pmc=4260296}}</ref> ||
|-
|-
| 1938 || Literature || Journal [[w:International Journal of Hematology|Acta Haematologica Japonica]] is established. In 1991, it would be renamed International Journal of Hematology.<ref name="Hematology in Japan: past, present and future"/> || {{w|Japan}}
| 1938 || Literature || Journal [[w:International Journal of Hematology|Acta Haematologica Japonica]] is established. In 1991, it would be renamed International Journal of Hematology.<ref name="Hematology in Japan: past, present and future"/> || {{w|Japan}}
|-
|-
| 1938 || || "Dr. Louis Diamond (known as the “father of American pediatric hematology”) along with Dr. Kenneth Blackfan describes the anemia still known as Diamond-Blackfan anemia."<ref name="The History of Hematology and Related Sciences"/> ||
| 1938 || Field development || American pediatricians {{{w|Louis Diamond}} (known as the “father of American pediatric hematology”) and {{w|Kenneth Blackfan}} describe the anemia still known as {{w|Diamond-Blackfan anemia}}.<ref name="The History of Hematology and Related Sciences"/> || {{w|United States}}
|-
|-
| 1941 || Literature || Blackfan, Diamond, and Leister publish ''The Atlas of the Blood of Children''.<ref name="The History of Hematology and Related Sciences"/> ||
| 1941 || Literature || Blackfan, Diamond, and Leister publish ''The Atlas of the Blood of Children''.<ref name="The History of Hematology and Related Sciences"/> ||
|-
|-
| 1945 || || "Coombs, Mourant, and Race describe the use of antihuman globulin (later known as the “Coombs Test”) to identify “incomplete” antibodies."<ref name="The History of Hematology and Related Sciences"/> ||
| 1945 || Field development || Robin Coombs, Arthur Mourant and Rob Race describe the use of antihuman globulin (later known as the “Coombs Test”) to identify “incomplete” antibodies.<ref name="The History of Hematology and Related Sciences"/> ||
|-
| 1945 || Field development || Antigen Lu{{sup|a}}, the first in the {{w|Lutheran antigen system}}, is found in the serum of a patient with {{w|lupus erythematosus}}.<ref>{{cite book |last1=Harmening |first1=Denise M |title=Modern Blood Banking and Transfusion Practices |url=https://books.google.com.ar/books?id=QdE-AAAAQBAJ&pg=PA199&lpg=PA199&dq=Lutheran+antigen+system+%22in+1900..2000%22&source=bl&ots=suahZEiF91&sig=KN9tEF8wu80t88_XY9qegVcAPnc&hl=en&sa=X&ved=2ahUKEwiTrpnBwpbeAhXM1VkKHQbuA-UQ6AEwAnoECAIQAQ#v=onepage&q=Lutheran%20antigen%20system%20%22in%201900..2000%22&f=false}}</ref> Antibodies against this blood group are rare and generally not considered clinically significant.<ref name="Blood groups systems"/> ||  
|-
|-
| 1946 || Literature || Journal ''[[w:Blood (journal)|Blood]]'' is established by {{w|William Dameshek}}.<ref>{{cite web |title=About Blood |url=http://www.bloodjournal.org/page/about-blood?sso-checked=true |website=bloodjournal.org |accessdate=20 September 2018}}</ref> ||
| 1946 || Literature || Journal ''[[w:Blood (journal)|Blood]]'' is established by {{w|William Dameshek}}.<ref>{{cite web |title=About Blood |url=http://www.bloodjournal.org/page/about-blood?sso-checked=true |website=bloodjournal.org |accessdate=20 September 2018}}</ref> ||
|-
|-
| 1947 || Field development || Lerner and Watson introduce the term "cryoglobulin", demonstrating the reversibility of the phenomenon when the sera are heated to 37°C.<ref name="Oxford Textbook of Vasculitis"/> ||
| 1946–1948 || Field development || The {{w|Lewis blood group system}} is identified. It is considered among the major blood group systems.<ref name="OTHER BLOOD GROUP SYSTEMS">{{cite web |title=OTHER BLOOD GROUP SYSTEMS |url=https://www.slideshare.net/ferdiefatiga/other-blood-group-systems |website=slideshare.net |accessdate=21 October 2018}}</ref> Consisting in antigens Le{{sup|a}} and Le{{sup|b}}, the second reaches a frequency of 70 percent in Europeans.<ref>{{cite web |title=Lewis blood group system |url=https://www.britannica.com/science/Lewis-blood-group-system |website=britannica.com |accessdate=21 October 2018}}</ref> ||
|-
|-
| 1950s || Field development || "The “butterfly” needle and intercath are developed, making IV access easier and safer."<ref name="The History of Hematology and Related Sciences"/> ||
| 1946 || Field development || Austro-Hungarian biochemist {{w|Erwin Chargaff}} and Randolph West discover that platelet-free plasma exhibits clotting properties.<ref name="=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication"/> ||
|-
| 1946 || Field development || The [[w:Kell antigen system|Kell blood group system]] is discovered.<ref>{{cite web |title=Kell blood group system |url=https://www.britannica.com/science/Kell-blood-group-system |website=britannica.com |accessdate=10 October 2018}}</ref> It is considered among the major blood group systems.<ref name="OTHER BLOOD GROUP SYSTEMS"/> These erythrocyte antigens are the third most potent immunogenic antigen after [[w:ABO blood group system|ABO]] and [[w:Rh blood group system|Rh]] system.<ref name="Blood groups systems"/> ||
|-
| 1947 || Field development || Lerner and Watson introduce the term "{{w|cryoglobulin}}", demonstrating the reversibility of the phenomenon when the sera are heated to 37°C.<ref name="Oxford Textbook of Vasculitis"/> ||
|-
| 1947 || Field development || Australian serologist Ruth Ann Sanger and Robert Russell Race identify the S and s genes.<ref name="Milestones in Transfusion Medicine"/> ||
|-
| 1950s || Instrumental || The [[w:Winged infusion set|“butterfly” needle]] and intercath are developed, making intravenous access easier and safer.<ref name="The History of Hematology and Related Sciences"/> ||
|-
|-
| 1950 || Organization || The {{w|Society for Hematology and Stem Cells}} is founded by a group of scientists for the presentation and discussion of experimental hematology pre-clinical data.<ref>{{cite web |title=Society for Hematology and Stem Cells |url=https://www.omicsonline.org/societies/society-for-hematology-and-stem-cells/ |website=omicsonline.org |accessdate=10 September 2018}}</ref> ||
| 1950 || Organization || The {{w|Society for Hematology and Stem Cells}} is founded by a group of scientists for the presentation and discussion of experimental hematology pre-clinical data.<ref>{{cite web |title=Society for Hematology and Stem Cells |url=https://www.omicsonline.org/societies/society-for-hematology-and-stem-cells/ |website=omicsonline.org |accessdate=10 September 2018}}</ref> ||
|-
|-
| 1954 || || "The blood product cryoprecipitate is developed to treat bleeds in people with hemophilia."<ref name="The History of Hematology and Related Sciences"/> ||
| 1950 || Field development || The {{w|Duffy antigen system}} is discovered.<ref name="APC Essentials of Forensic Medicine and Toxicology"/> It is considered among the major blood group systems.<ref name="OTHER BLOOD GROUP SYSTEMS"/> ||
|-
| 1951 || Field development || The [[W:Kidd antigen system|Kidd blood group system]] is discovered.<ref>{{cite book |title=Blood: Physiology and Circulation |edition=Kara Rogers Senior Editor, Biomedical Sciences |url=https://books.google.com.ar/books?id=iObZwlOu1mMC&pg=PA106&lpg=PA106&dq=Diego+antigen+system+in+1940..1980&source=bl&ots=aHUPunj1aG&sig=9qoLdXfpfZx6z4bFwC7h5_LCIh4&hl=en&sa=X&ved=2ahUKEwj1vNa0pfzdAhXCE5AKHVnGDi0Q6AEwAHoECAQQAQ#v=onepage&q=Diego%20antigen%20system%20in%201940..1980&f=false}}</ref> It is considered among the major blood group systems.<ref name="OTHER BLOOD GROUP SYSTEMS"/> Kidd antibodies are rare but can cause severe transfusion reactions.<ref name="Blood groups systems"/> ||
|-
| 1952 || Field development || {{w|Hh blood group}} (also known as Oh or the Bombay blood group) is first discovered in {{w|Bombay}} (Mumbai), India.<ref>{{cite journal |title=Chapter 6The Hh blood group |url=https://www.ncbi.nlm.nih.gov/books/NBK2268/}}</ref> It is a very rare histo-blood group phenotype.<ref>{{cite web |title=Hh blood group |url=https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hh-blood-group |website=sciencedirect.com |accessdate=21 October 2018}}</ref> || {{w|India}}
|-
| 1954 || Field development || The {{w|blood product}} {{w|cryoprecipitate}} is developed to treat bleeds in people with {{w|hemophilia}}.<ref name="The History of Hematology and Related Sciences"/> ||
|-
|-
| 1954 || || Peterman and Braunsteiner report cryoprecipitates of {{w|immunoglobulin}}s with different sedimentation rates, thus introducing the concept of "mixed cryoglobulinaemia".<ref name="Oxford Textbook of Vasculitis"/> ||
| 1954 || Field development || Peterman and Braunsteiner report cryoprecipitates of {{w|immunoglobulin}}s with different sedimentation rates, thus introducing the concept of "mixed cryoglobulinaemia".<ref name="Oxford Textbook of Vasculitis"/> ||
|-
|-
| 1955 || Literature || The ''{{w|British Journal of Haematology}}'' is launched.<ref>{{cite book |last1=Goldman |first1=Lawrence |title=Oxford Dictionary of National Biography 2005-2008 |url=https://books.google.com.ar/books?id=nbGcAQAAQBAJ&pg=PA281&dq=%22in+1955%22+%22British+Journal+of+Haematology%22&hl=en&sa=X&ved=0ahUKEwjMjNiV4KndAhVFDJAKHc2lA7cQ6AEIKDAA#v=onepage&q=%22in%201955%22%20%22British%20Journal%20of%20Haematology%22&f=false}}</ref><ref>{{cite book |last1=Harrison |first1=Brian |last2=Aston |first2=Trevor Henry |title=The History of the University of Oxford: Volume VIII: The Twentieth Century |url=https://books.google.com.ar/books?id=OP5ePl7i5EIC&pg=PA463&dq=%22in+1955%22+%22British+Journal+of+Haematology%22&hl=en&sa=X&ved=0ahUKEwjMjNiV4KndAhVFDJAKHc2lA7cQ6AEILTAB#v=onepage&q=%22in%201955%22%20%22British%20Journal%20of%20Haematology%22&f=false}}</ref> || {{w|United Kingdom}}
| 1955 || Literature || The ''{{w|British Journal of Haematology}}'' is launched.<ref>{{cite book |last1=Goldman |first1=Lawrence |title=Oxford Dictionary of National Biography 2005-2008 |url=https://books.google.com.ar/books?id=nbGcAQAAQBAJ&pg=PA281&dq=%22in+1955%22+%22British+Journal+of+Haematology%22&hl=en&sa=X&ved=0ahUKEwjMjNiV4KndAhVFDJAKHc2lA7cQ6AEIKDAA#v=onepage&q=%22in%201955%22%20%22British%20Journal%20of%20Haematology%22&f=false}}</ref><ref>{{cite book |last1=Harrison |first1=Brian |last2=Aston |first2=Trevor Henry |title=The History of the University of Oxford: Volume VIII: The Twentieth Century |url=https://books.google.com.ar/books?id=OP5ePl7i5EIC&pg=PA463&dq=%22in+1955%22+%22British+Journal+of+Haematology%22&hl=en&sa=X&ved=0ahUKEwjMjNiV4KndAhVFDJAKHc2lA7cQ6AEILTAB#v=onepage&q=%22in%201955%22%20%22British%20Journal%20of%20Haematology%22&f=false}}</ref> || {{w|United Kingdom}}
|-
| 1955 || Field development || The {{w|Diego antigen system}} is discovered.<ref name="APC Essentials of Forensic Medicine and Toxicology">{{cite book |last1=Aggrawal |first1=Anil |title=APC Essentials of Forensic Medicine and Toxicology |url=https://books.google.com.ar/books?id=iSH8CgAAQBAJ&pg=PA413&lpg=PA413&dq=Diego+antigen+system+in+1940..1980&source=bl&ots=qKrQZJjNCW&sig=2EG4y1f9SSPbGKlcmvPqGR6egpE&hl=en&sa=X&ved=2ahUKEwj1vNa0pfzdAhXCE5AKHVnGDi0Q6AEwAnoECAIQAQ#v=onepage&q=Diego%20antigen%20system%20in%201940..1980&f=false}}</ref> It is very rare among [[w:caucasian race|Caucasians}} and [[w:Black people|Blacks]], but relatively common among the South American Indians and Asians of Mongolian origin.<ref>{{cite journal |last1=Tar Wei |first1=Cheong |last2=Al-Hassan |first2=Faisal Muti |last3=Naim |first3=Norris |last4=Knight |first4=Aishah |last5=Joshi |first5=Sanmukh R. |title=Prevalence of Diego blood group antigen and the antibody in three ethnic population groups in Klang valley of Malaysia |doi=10.4103/0973-6247.106725 |pmid=23559760 |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613656/ |pmc=3613656}}</ref> || {{w|Venezuela}}
|-
|-
| 1958 || Organization || The {{w|American Society of Hematology}} is founded.<ref>{{cite web |title=American Society of Hematology sponsors high school symposium at San Diego annual meeting |url=https://www.eurekalert.org/pub_releases/2003-12/uou-aso120503.php |website=eurekalert.org |accessdate=8 September 2018}}</ref><ref>{{cite journal |last1=Silver |first1=Samuel M. |title=The American Society of Hematology: Advancing Knowledge and Treatment of Blood Disorders |pmid=29447514 |pmc=2793577}}</ref> || {{w|United States}}
| 1958 || Organization || The {{w|American Society of Hematology}} is founded.<ref>{{cite web |title=American Society of Hematology sponsors high school symposium at San Diego annual meeting |url=https://www.eurekalert.org/pub_releases/2003-12/uou-aso120503.php |website=eurekalert.org |accessdate=8 September 2018}}</ref><ref>{{cite journal |last1=Silver |first1=Samuel M. |title=The American Society of Hematology: Advancing Knowledge and Treatment of Blood Disorders |pmid=29447514 |pmc=2793577}}</ref> || {{w|United States}}
Line 133: Line 178:
| 1960 || Organization || The {{w|British Society for Haematology}} is founded.<ref>{{cite web |title=British Society for Haematology (BSH) |url=https://www.emedevents.com/organizer-profile/british-society-for-haematology-bsh-28662 |website=emedevents.com |accessdate=7 September 2018}}</ref> || {{w|United Kingdom}}
| 1960 || Organization || The {{w|British Society for Haematology}} is founded.<ref>{{cite web |title=British Society for Haematology (BSH) |url=https://www.emedevents.com/organizer-profile/british-society-for-haematology-bsh-28662 |website=emedevents.com |accessdate=7 September 2018}}</ref> || {{w|United Kingdom}}
|-
|-
| 1961 || || Researchers identify role of platelets in treating cancer patients.<ref name="A Historical Perspective on Evidence-Based Immunology">{{cite book |last1=Moticka |first1=Edward J. |title=A Historical Perspective on Evidence-Based Immunology |url=https://books.google.com.ar/books?id=2TMwAAAAQBAJ&pg=PA302&dq=%22in+1961%22+platelets+in+treating+cancer+patients&hl=en&sa=X&ved=0ahUKEwjGgern78ndAhWTPpAKHb47AjwQ6AEIPzAF#v=onepage&q=%22in%201961%22%20platelets%20in%20treating%20cancer%20patients&f=false}}</ref><ref name="What is Hematology?"/> ||
| 1960 || Field development || The {{w|Gerbich blood group system}} is discovered.<ref name="Wintrobe's Clinical Hematology, Volume 1"/> ||
|-
| 1961 || Field development || Researchers identify role of platelets in treating cancer patients.<ref name="A Historical Perspective on Evidence-Based Immunology">{{cite book |last1=Moticka |first1=Edward J. |title=A Historical Perspective on Evidence-Based Immunology |url=https://books.google.com.ar/books?id=2TMwAAAAQBAJ&pg=PA302&dq=%22in+1961%22+platelets+in+treating+cancer+patients&hl=en&sa=X&ved=0ahUKEwjGgern78ndAhWTPpAKHb47AjwQ6AEIPzAF#v=onepage&q=%22in%201961%22%20platelets%20in%20treating%20cancer%20patients&f=false}}</ref><ref name="What is Hematology?"/> ||
|-
| 1962 || Field development || At an {{w|International Committee on Blood Clotting Factors}} conference in {{w|Stockholm}}, English hematologist {{w|Robert Gwyn Macfarlane}} of Oxford and American researcher {{w|Oscar Ratnoff}} propose that the coagulation process involves an {{w|enzyme}} acting on its substrate to make it an active enzyme, which subsequently acts on its own distinct substrate. This type of enzymatic activation continues down a line of substrates before coagulation is achieved.<ref name="=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication"/> || {{w|Sweden}}
|-
| 1962 || Field development || The {{w|Xg antigen system}} is discovered by Mann in the serum of a multiply transfused male.<ref name="Wintrobe's Clinical Hematology, Volume 1">{{cite book |title=Wintrobe's Clinical Hematology, Volume 1 |edition=John P. Greer |url=https://books.google.com.ar/books?id=68enzUD7BVgC&pg=PA644&lpg=PA644&dq=Dombrock+system+%22in+1960..1998%22&source=bl&ots=fGFWhJSb_r&sig=a1u8d0NhOxoD5FZm75np7wEmL_8&hl=en&sa=X&ved=2ahUKEwiBgd-bqvzdAhWHTJAKHfjwA7MQ6AEwBXoECAIQAQ#v=onepage&q=Dombrock%20system%20%22in%201960..1998%22&f=false}}</ref> ||
|-
| 1962 || Field development || The first antihemophilic factor concentrate to treat coagulation disorders in hemophilia patients is developed through fractionation.<ref name="The History of Hematology and Related Sciences"/> ||
|-
|-
| 1962 || || " The first antihemophilic factor concentrate to treat coagulation disorders in hemophilia patients is developed through fractionation."<ref name="The History of Hematology and Related Sciences"/> ||
| 1962 || Field development || Researchers at {{w|CSL Behring}} develop a new plasma fractionation method that provides significantly better yields of the valuable proteins isolated from human plasma.<ref>{{cite web |title=CSL Behring |url=http://www.bstquarterly.com/Assets/downloads/BSTQ/Articles/BSTQ_2013-07_Supplement_AR_CSL-Behring.pdf |website=bstquarterly.com |accessdate=25 September 2018}}</ref> ||
|-
|-
| 1962 || || Platelet transfusion begins to be used more routinely, especially in cancer patients when the relationship between {{w|thrombocytopenia}} and {{w|hemorrage}} is noted.<ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> ||
| 1962 || Field development || Platelet transfusion begins to be used more routinely, especially in cancer patients when the relationship between {{w|thrombocytopenia}} and {{w|hemorrage}} is noted.<ref name="Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update"/> ||
|-
|-
| 1969 || || "S. Murphy and F. Gardner demonstrate the feasibility of storing platelets at room temperature, revolutionizing platelet transfusion therapy."<ref name="The History of Hematology and Related Sciences"/> ||
| 1965 || Field development || The {{w|Cromer blood group system}} is discovered.<ref name="Wintrobe's Clinical Hematology, Volume 1"/> ||
|-
|-
| 1971 || Field development || Testing blood for {{w|Hepatitis B}} is first conducted in the United States.<ref name="What is Hematology?"/><ref name="The History of Hematology and Related Sciences"/> || {{w|United States}}
| 1965 || Field development || The first {{w|antibody}} of the {{w|Dombrock system}} is identified.<ref>{{cite book |last1=Hillyer |first1=Christopher D. |title=Blood Banking and Transfusion Medicine: Basic Principles & Practice |url=https://books.google.com.ar/books?id=3QwXx_enKbcC&pg=PT123&lpg=PT123&dq=Dombrock+system+%22in+1960..1998%22&source=bl&ots=-8uKh9-y_E&sig=BE7PnHz1Bg6INXqHocmhp-E8keo&hl=en&sa=X&ved=2ahUKEwiBgd-bqvzdAhWHTJAKHfjwA7MQ6AEwAHoECAUQAQ#v=onepage&q=Dombrock%20system%20%22in%201960..1998%22&f=false}}</ref> ||
|-
| 1967 || Organization || The Turkish Society of Hematology is founded.<ref>{{cite book |last1=Svendsen |first1=Clive |last2=Ebert |first2=Allison D. |title=Encyclopedia of Stem Cell Research, Volume 2 |url=https://books.google.com.ar/books?id=UhvtbMmxXeAC&pg=PA557&lpg=PA557&dq=Turkish+Society+of+Gene+%26+Cell+Therapy+%22in+1950..2017%22&source=bl&ots=kvmzsRtVc5&sig=jIncYO7H9vlEQlbcS9m4fRMzB1U&hl=en&sa=X&ved=2ahUKEwiQr8mT8qLeAhXJEZAKHa1UBqIQ6AEwAHoECAkQAQ#v=onepage&q=Turkish%20Society%20of%20Gene%20%26%20Cell%20Therapy%20%22in%201950..2017%22&f=false}}</ref> || {{w|Turkey}}
|-
| 1967 || Field development || Peter Wolf first identifies microparticles as a product of platelets.<ref name="=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication">{{cite journal |last1=Hargett |first1=Leslie A. |last2=Bauer |first2=Natalie N. |title=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication |doi=10.4103/2045-8932.114760 |pmid=24015332 |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757826/ |pmc=3757826}}</ref> ||
|-
| 1967 || Field development || The [[w:Colton antigen system|Colton blood group system]] is identified.<ref>{{cite book |last1=McPherson |first1=Richard A. |last2=Pincus |first2=Matthew R. |title=Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book |url=https://books.google.com.ar/books?id=xAzhCwAAQBAJ&pg=PA706&lpg=PA706&dq=Colton+antigen+system+%22in+1800..2016%22&source=bl&ots=mFSpAi70uN&sig=iLm9GdNutNeesUyP6q6L6IRgDwQ&hl=en&sa=X&ved=2ahUKEwiS6pnTo_zdAhWInJAKHY4DCiMQ6AEwAHoECAcQAQ#v=onepage&q=Colton%20antigen%20system%20%22in%201800..2016%22&f=false}}</ref> ||
|-
| 1968 || Field development || Rh immune globulin (RhIg) is first licensed as a human plasma-derived product consisting of [[w:Immunoglobulin G|IgG antibodies]] to the {{w|D antigen}}. It is used to prevent immunization to the D antigen in D-negative individuals and for the treatment of {{w|immune thrombocytopenia}} (ITP).<ref>{{cite web |title=Rho(D) immune globulin |url=https://www.sciencedirect.com/topics/neuroscience/rho-d-immune-globulin |website=sciencedirect.com |accessdate=12 October 2018}}</ref> ||
|-
| 1970 || Field development || Webber and Johnson find that platelet alpha granule contents are encompassed into vesicles, which come together to form a membrane complex at the surface of the platelet.<ref name="=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication"/> ||
|-
|-
| 1972 || Literature || Journal ''{{w|Experimental Hematology}}'' is launched by the International Society for Experimental Hematology, incorporated the same year as the continuation of the Society for Hematology and Stem Cells.<ref>{{cite book |last1=Fagan |first1=Melinda |title=Philosophy of Stem Cell Biology: Knowledge in Flesh and Blood |url=https://books.google.com.ar/books?id=KD1y63M-5R4C&pg=PA248&dq=%22in+1972%22+journal+%22Experimental+Hematology%22&hl=en&sa=X&ved=0ahUKEwi-1ueooardAhUMg5AKHcT_DFMQ6AEIKDAA#v=onepage&q=%22in%201972%22%20journal%20%22Experimental%20Hematology%22&f=false}}</ref> ||
| 1972 || Literature || Journal ''{{w|Experimental Hematology}}'' is launched by the International Society for Experimental Hematology, incorporated the same year as the continuation of the Society for Hematology and Stem Cells.<ref>{{cite book |last1=Fagan |first1=Melinda |title=Philosophy of Stem Cell Biology: Knowledge in Flesh and Blood |url=https://books.google.com.ar/books?id=KD1y63M-5R4C&pg=PA248&dq=%22in+1972%22+journal+%22Experimental+Hematology%22&hl=en&sa=X&ved=0ahUKEwi-1ueooardAhUMg5AKHcT_DFMQ6AEIKDAA#v=onepage&q=%22in%201972%22%20journal%20%22Experimental%20Hematology%22&f=false}}</ref> ||
|-
|-
| 1972 || || American medical technologist {{w|Herb Cullis}} invents the apheresis machine, which is used to extract one cellular component, returning the rest of the blood to the donor.<ref>{{cite web |title=A Brief History of Apheresis Platelet Collection at the Western Province Blood Transfusion Service |url=http://sabloodcongress.org/2017/images/Poster%20Abstracts/PP%2082.%20R%20Abrahams.pdf |website=http://sabloodcongress.org |accessdate=25 September 2018}}</ref><ref name="The History of Hematology and Related Sciences"/> || {{w|United States}}
| 1974 || Literature || Davis Nathan and Stuart Oski publish ''Hematology of Infancy and Childhood''.<ref name="The History of Hematology and Related Sciences"/> ||
|-
|-
| 1974 || Literature || Davis Nathan and Stuart Oski publish ''Hematology of Infancy and Childhood''.<ref name="The History of Hematology and Related Sciences"/> ||
| 1974 || Field development || The [[w:ERMAP|Scianna]] blood group system is established.<ref>{{cite book |last1=Harmening |first1=Denise M |title=Modern Blood Banking and Transfusion Practices |url=https://books.google.com.ar/books?id=QdE-AAAAQBAJ&pg=PA203&lpg=PA203&dq=blood+system+is+established+in+1900..2017&source=bl&ots=su9q_ErG90&sig=3m9AHLiiBI5BXVLRSHqlRgooxcI&hl=en&sa=X&ved=2ahUKEwiAq6zSy_zdAhUJl5AKHdh7CZUQ6AEwCnoECAYQAQ#v=onepage&q=blood%20system%20is%20established%20in%201900..2017&f=false}}</ref> Composed of three antigens, the first, Sc1, a high frequency antigen, is found in greater than 99 % of most populations. The frequency of Sc2 is about 1% of Northern Europeans but the frequency is much lower in other populations. The incidence of Sc:1,2 is more common in {{w|Mennonites}}.<ref>{{cite web |title=Scianna |url=http://scarfex.jove.prohosting.com/blood/13.html |website=scarfex.jove.prohosting.com |accessdate=21 October 2018}}</ref> ||
|-
|-
| 1975 || Literature || Journal {{w|Blood Cells, Molecules and Diseases}} is established.<ref>{{cite web |title=BLOOD CELLS, MOLECULES, AND DISEASES: PAST, PRESENT, AND FUTURE |url=https://kundoc.com/pdf-blood-cells-molecules-and-diseases-past-present-and-future-.html |website=kundoc.com |accessdate=10 September 2018}}</ref> ||
| 1975 || Literature || Journal {{w|Blood Cells, Molecules and Diseases}} is established.<ref>{{cite web |title=BLOOD CELLS, MOLECULES, AND DISEASES: PAST, PRESENT, AND FUTURE |url=https://kundoc.com/pdf-blood-cells-molecules-and-diseases-past-present-and-future-.html |website=kundoc.com |accessdate=10 September 2018}}</ref> ||
Line 156: Line 219:
|-
|-
| 1977 || Field development || Miyake et al first purify {{w|erythropoietin}}.<ref name="Hematology in Japan: past, present and future"/> || {{w|Japan}}
| 1977 || Field development || Miyake et al first purify {{w|erythropoietin}}.<ref name="Hematology in Japan: past, present and future"/> || {{w|Japan}}
|-
| 1978 || Field development || The {{w|Duclos antigen}} is identified.<ref name="The Blood Group Antigen FactsBook"/> ||
|-
| 1970s || Field development || Alan T. Nurden, Jacques P. Caen, David R. Phillips, and others describe the molecular basis of platelet aggregation.<ref name="Milestones in Antiplatelet Therapy"/> ||
|-
| 1980 || Field development || The [[w:International Society of Blood Transfusion|ISBT]] Working Party on Terminology for Red Cell Surface Antigens is established with the goal of creating a uniform nomenclature.<ref name="Wintrobe's Clinical Hematology, Volume 1"/> ||
|-
| 1980 || Field development || {{w|Molecular biology}} is applied to the study of blood groups.<ref name="Transfusion Medicine and Patient Safety">{{cite book |last1=De Silvestro |first1=Giustina |last2=Veronesi |first2=Arianna |last3=Vicarioto |first3=Maria |title=Transfusion Medicine and Patient Safety |url=https://books.google.com.ar/books?id=pM5c_mQr9FUC&pg=PA1&lpg=PA1&dq=1945+%7C%7C+%7C%7C+Robin+Coombs,+Arthur+Mourant+and+Robert+Race&source=bl&ots=cl3l1jVL-F&sig=8isSV4CTy60ee31fvxWBWlOpPXs&hl=en&sa=X&ved=2ahUKEwiY07m6_P7dAhWMg5AKHTPeBHsQ6AEwC3oECAMQAQ#v=onepage&q=1945%20%7C%7C%20%7C%7C%20Robin%20Coombs%2C%20Arthur%20Mourant%20and%20Robert%20Race&f=false}}</ref> ||
|-
|-
| 1981 || Organization || The {{w|American Society of Pediatric Hematology/Oncology}} is founded.<ref>{{cite book |last1=Maurer |first1=Harold M. |last2=Ruymann |first2=Frederick B. |last3=Pochedly |first3=Carl E. |title=Rhabdomyosarcoma and Related Tumors in Children and Adolescents |url=https://books.google.com.ar/books?id=W9TfFbMvQJgC&pg=PP9&dq=%22in+1981%22+American+Society+of+Pediatric+Hematology/Oncology&hl=en&sa=X&ved=0ahUKEwjYx5CCnq_dAhVCgpAKHQjtCGgQ6AEIKDAA#v=onepage&q=%22in%201981%22%20American%20Society%20of%20Pediatric%20Hematology%2FOncology&f=false}}</ref><ref>{{cite book |last1=Pochedly |first1=Carl E. |title=Neuroblastoma |url=https://books.google.com.ar/books?id=gxNNDtrHYYEC&pg=PP7&dq=%22in+1981%22+American+Society+of+Pediatric+Hematology/Oncology&hl=en&sa=X&ved=0ahUKEwjYx5CCnq_dAhVCgpAKHQjtCGgQ6AEILzAB#v=onepage&q=%22in%201981%22%20American%20Society%20of%20Pediatric%20Hematology%2FOncology&f=false}}</ref> || {{w|United States}}  
| 1981 || Organization || The {{w|American Society of Pediatric Hematology/Oncology}} is founded.<ref>{{cite book |last1=Maurer |first1=Harold M. |last2=Ruymann |first2=Frederick B. |last3=Pochedly |first3=Carl E. |title=Rhabdomyosarcoma and Related Tumors in Children and Adolescents |url=https://books.google.com.ar/books?id=W9TfFbMvQJgC&pg=PP9&dq=%22in+1981%22+American+Society+of+Pediatric+Hematology/Oncology&hl=en&sa=X&ved=0ahUKEwjYx5CCnq_dAhVCgpAKHQjtCGgQ6AEIKDAA#v=onepage&q=%22in%201981%22%20American%20Society%20of%20Pediatric%20Hematology%2FOncology&f=false}}</ref><ref>{{cite book |last1=Pochedly |first1=Carl E. |title=Neuroblastoma |url=https://books.google.com.ar/books?id=gxNNDtrHYYEC&pg=PP7&dq=%22in+1981%22+American+Society+of+Pediatric+Hematology/Oncology&hl=en&sa=X&ved=0ahUKEwjYx5CCnq_dAhVCgpAKHQjtCGgQ6AEILzAB#v=onepage&q=%22in%201981%22%20American%20Society%20of%20Pediatric%20Hematology%2FOncology&f=false}}</ref> || {{w|United States}}  
Line 163: Line 234:
| 1986 || Field development || Granulocyte colony-stimulating factor is cloned independently in Japan.<ref name="Hematology in Japan: past, present and future"/> || {{w|Japan}}
| 1986 || Field development || Granulocyte colony-stimulating factor is cloned independently in Japan.<ref name="Hematology in Japan: past, present and future"/> || {{w|Japan}}
|-
|-
| 1987 || || The United States {{w|Food and Drug Administration}} approves the use of azidothymidine (AZT) to treat HIV.<ref name="What is Hematology?"/> || {{w|United States}}
| 1986 || Field development || The Ol{{sup|a}} antigen is identified.<ref name="The Blood Group Antigen FactsBook"/> A rare blood group antigen, Only one Ol{{sup|a+}} person was found among the 7, 151 blood donors tested.<ref>{{cite web |last1=Kornstad |first1=Leif |title=A Rare Blood Group Antigen, Ola (Oldeide), Associated with Weak Rh Antigens1 |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1423-0410.1986.tb04888.x |website=onlinelibrary.wiley.com |accessdate=21 October 2018}}</ref> ||
|-
|-
| 1987 || Literature || Journal ''{{w|Blood Reviews}}'' is established.<ref>{{cite web |title=Blood Reviews |url=https://www.bloodreviews.com/article/S0268-960X(13)00030-1/pdf |website=bloodreviews.com |accessdate=7 September 2018}}</ref> ||
| 1987 || Literature || Journal ''{{w|Blood Reviews}}'' is established.<ref>{{cite web |title=Blood Reviews |url=https://www.bloodreviews.com/article/S0268-960X(13)00030-1/pdf |website=bloodreviews.com |accessdate=7 September 2018}}</ref> ||
|-
|-
| 1990s || Field development || Recombinant factor replacement products are used to treat {{w|hemophilia}}.<ref name="What is Hematology?"/> ||
| 1990s || Field development || Recombinant factor replacement products are used to treat {{w|hemophilia}}.<ref name="What is Hematology?"/> ||
|-
| 1990 || Field development || The {{w|Er blood group collection}} is established as a blood group.<ref>{{cite journal |last1=Cordoba |first1=Raul |last2=Poole |first2=Joyce |last3=Marais |first3=Imelda |last4=Mora |first4=Asuncion |last5=Ercoreca |first5=Luis |last6=Long |first6=Shannon |title=The second example of anti-Erb in a woman during her third pregnancy |doi=10.2450/2012.0098-12 |pmid=23114526 |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729140/ |pmc=3729140}}</ref> ||
|-
|-
| 1990 || Literature || Peer-reviewed medical journal [[w:Platelets (journal)|Platelets]] is first issued.<ref>{{cite web |title=Platelets: The end of an era, start of a new beginning |url=https://www.tandfonline.com/doi/pdf/10.3109/09537104.2015.993234 |website=tandfonline.com |accessdate=20 September 2018}}</ref> ||
| 1990 || Literature || Peer-reviewed medical journal [[w:Platelets (journal)|Platelets]] is first issued.<ref>{{cite web |title=Platelets: The end of an era, start of a new beginning |url=https://www.tandfonline.com/doi/pdf/10.3109/09537104.2015.993234 |website=tandfonline.com |accessdate=20 September 2018}}</ref> ||
|-
| 1991 || Field development || The {{w|Knops blood group system}} is established.<ref name="Wintrobe's Clinical Hematology, Volume 1"/> Most of the anigens of this system are common, occurring with a prevalence of >90% in most populations.<ref>{{cite book |title=Wintrobe's Clinical Hematology, Volume 1 |edition=John P. Greer |url=https://books.google.com.ar/books?id=68enzUD7BVgC&pg=PA647&lpg=PA647&dq=Knops+blood+group+system&source=bl&ots=fGGNhF-f0q&sig=r5GH2MtgiKNhuGRLp_wipkyMS3Y&hl=en&sa=X&ved=2ahUKEwisvN_KxZjeAhUhw1kKHXI7A9g4FBDoATAMegQIARAB#v=onepage&q=Knops%20blood%20group%20system&f=false}}</ref> ||
|-
|-
| 1992 || Organization || The {{w|International Society for Laboratory Hematology}} is founded by an international group of laboratory professionals in order to chart new directions for laboratory hematology.<ref>{{cite web |title=International Society for Laboratory Hematology |url=https://www.islh.org/web/about-islh.php |website=islh.org |accessdate=10 September 2018}}</ref> ||
| 1992 || Organization || The {{w|International Society for Laboratory Hematology}} is founded by an international group of laboratory professionals in order to chart new directions for laboratory hematology.<ref>{{cite web |title=International Society for Laboratory Hematology |url=https://www.islh.org/web/about-islh.php |website=islh.org |accessdate=10 September 2018}}</ref> ||
|-
|-
| 1992 || Organization || The {{w|European Hematology Association}} is founded in {{w|Brussels}}. || {{w|Belgium}}
| 1992 || Organization || The {{w|European Hematology Association}} is founded in {{w|Brussels}}.<ref>{{cite web |title=European Hematology Association (EHA) |url=https://www.linkedin.com/company/eha/ |website=linkedin.com |accessdate=4 October 2018}}</ref> || {{w|Belgium}}
|-
| 1994 || Field development || Researchers investigating the effects of {{w|lipopolysaccharide}} (LPS) stimulation on monocyte procoagulant activity, reveal that the microparticles released by stimulated human {{w|monocyte}}s possess more tissue factor activity than their parent monocytes.<ref name="=On the origin of microparticles: From “platelet dust” to mediators of intercellular communication"/> ||
|-
| 2002 || Field development || The {{w|GIL blood group system}} is established.<ref>{{cite book |last1=Harmening |first1=Denise M |title=Modern Blood Banking and Transfusion Practices |url=https://books.google.com.ar/books?id=QdE-AAAAQBAJ&pg=PA205&lpg=PA205&dq=chido+rodgers+blood+group+system+%22in+1900..2015%22&source=bl&ots=su9q_EoO54&sig=JLR4PR_IS8ycvJ3f_oZus1JBlNU&hl=en&sa=X&ved=2ahUKEwiZv_enw_zdAhXIIpAKHYlzBeEQ6AEwAnoECAQQAQ#v=onepage&q=chido%20rodgers%20blood%20group%20system%20%22in%201900..2015%22&f=false}}</ref> It is designated as system 29.<ref>{{cite journal |last1=Rumsey |first1=DM |last2=Mallory |first2=DA |title=GIL: a blood group system review. |pmid=24689684 |url=https://www.ncbi.nlm.nih.gov/pubmed/24689684}}</ref> ||
|-
|-
| 2008 || Literature || Journal {{w|Expert Review of Hematology}} is released.<ref>{{cite web |title=Expert Review of Hematology |url=https://www.tandfonline.com/loi/ierr20?open=1&year=2008&repitition=0#vol_1_2008 |website=tandfonline.com |accessdate=8 September 2018}}</ref> ||
| 2008 || Literature || Journal {{w|Expert Review of Hematology}} is released.<ref>{{cite web |title=Expert Review of Hematology |url=https://www.tandfonline.com/loi/ierr20?open=1&year=2008&repitition=0#vol_1_2008 |website=tandfonline.com |accessdate=8 September 2018}}</ref> ||
|-
|-
| 2008 || Literature || {{w|Open Hematology Journal}} ||
| 2008 || Literature || The ''{{w|Open Hematology Journal}}'' is released.<ref>{{cite web |title=Effects Of Benzene on Human Hematopoiesis |url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.520&rep=rep1&type=pdf |website=citeseerx.ist.psu.edu |accessdate=30 September 2018}}</ref> ||
|-
|-
| 2008 || Field development || The {{w|RHAg}} (Rh-associated glycoprotein) is established as a blood group system.<ref name="The Blood Group Antigen FactsBook">{{cite book |last1=Reid |first1=Marion E. |last2=Lomas-Francis |first2=Christine |last3=Olsson |first3=Martin L. |title=The Blood Group Antigen FactsBook |url=https://books.google.com.ar/books?id=XVTc49cTw3MC&pg=PA619&lpg=PA619&dq=RHAg+system+in+1980..2017&source=bl&ots=q3Fs70yz5E&sig=8Td5bDftqsnOR22n-Ocwjgnu7Rs&hl=en&sa=X&ved=2ahUKEwjiiJjPqpbeAhUC1lkKHbTIDzwQ6AEwAHoECAIQAQ#v=onepage&q=RHAg%20system%20in%201980..2017&f=false}}</ref> ||
|-
| 2011 || Field development || The {{w|FORS blood group}} system is established as the 31st blood group system.<ref>{{cite book |title=Transfusion Medicine and Hemostasis: Clinical and Laboratory Aspects |edition=Beth H. Shaz, Christopher D. Hillyer, Morayma Reyes Gil |url=https://books.google.com.ar/books?id=lPdtDwAAQBAJ&pg=PA175&lpg=PA175&dq=Forssman+antigen+system+%22in+1900..2017%22&source=bl&ots=FCI6hu_hrO&sig=ME8oaZ-gQfvjAJUJ1NfdyfozGYA&hl=en&sa=X&ved=2ahUKEwjI8860wfzdAhVCFJAKHfV_BJAQ6AEwAHoECAcQAQ#v=onepage&q=Forssman%20antigen%20system%20%22in%201900..2017%22&f=false}}</ref><ref>{{cite journal |last1=Yamamoto |first1=Miyako |last2=Cid |first2=Emili |last3=Yamamoto |first3=Fumiichiro |title=Crosstalk between ABO and Forssman (FORS) blood group systems: FORS1 antigen synthesis by ABO gene-encoded glycosyltransferases |doi=10.1038/srep41632 |pmid=28134301 |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278553/ |pmc=5278553}}</ref> ||
|-
|}
|}
== Numerical and visual data  ==
=== Google Scholar ===
The following table summarizes per-year mentions on Google Scholar as of June 5, 2021.
{| class="sortable wikitable"
! Year
! hematology
! hematology oncology
! pediatric hematology
! hematopathology
|-
| 1980 || 7,590 || 2,670 || 698 || 60
|-
| 1985 || 9,060 || 4,160 || 1,230 || 85
|-
| 1990 || 11,500 || 5,600 || 1,630 || 112
|-
| 1995 || 18,500 || 8,360 || 2,600 || 276
|-
| 2000 || 46,300 || 13,900 || 5,190 || 412
|-
| 2002 || 52,100 || 14,700 || 5,470 || 521
|-
| 2004 || 64,500 || 20,000 || 6,690 || 547
|-
| 2006 || 73,300 || 22,800 || 7,920 || 609
|-
| 2008 || 88,400 || 33,100 || 9,790 || 707
|-
| 2010 || 96,500 || 31,800 || 10,900 || 722
|-
| 2012 || 108,000 || 41,500 || 13,900 || 1,120 
|-
| 2014 || 110,000 || 40,900 || 15,300 || 1,080
|-
| 2016 || 107,000 || 47,000 || 17,400 || 1,310
|-
| 2017 || 102,000 || 48,100 || 18,200 || 1,200 
|-
| 2018 || 93,500 || 47,500 || 18,900 || 1,340 
|-
| 2019 || 83,500 || 45,000 || 19,900 || 1,520 
|-
| 2020 || 56,400 || 32,200 || 22,800 || 1,330 
|-
|}
[[File:Hematology tb.png|thumb|center|700px]]
=== Google Trends ===
The comparative chart below shows {{w|Google Trends}} data for Hematology (Branch of medicine) and Hematology (Search term) from January 2004 to February 2021, when the screenshot was taken. Interest is also ranked by country and displayed on world map.<ref>{{cite web |title=Hematology |url=https://trends.google.com/trends/explore?date=all&q=%2Fm%2F0h212,Hematology |website=Google Trends |access-date=25 February 2021}}</ref>
[[File:Hematology gt.png|thumb|center|600px]]
=== Google Ngram Viewer ===
The chart below shows {{w|Google Ngram Viewer}} data for Hematology from 1600 to 2019.<ref>{{cite web |title=Hematology |url=https://books.google.com/ngrams/graph?content=Hematology&year_start=1600&year_end=2019&corpus=26&smoothing=3&case_insensitive=true |website=books.google.com |access-date=25 February 2021 |language=en}}</ref>
[[File:Hematology ngram.png|thumb|center|700px]]
=== Wikipedia Views ===
The chart below shows pageviews of the English Wikipedia article {{w|Hematology}}, on desktop, mobile-web, desktop-spider, mobile-web-spider and mobile app, from July 2015 to January 2021.<ref>{{cite web |title=Hematology |url=https://wikipediaviews.org/displayviewsformultiplemonths.php?page=Hematology&allmonths=allmonths-api&language=en&drilldown=all |website=wikipediaviews.org |access-date=24 February 2021}}</ref>
[[File:Hematology wv.jpg|thumb|center|400px]]


==Meta information on the timeline==
==Meta information on the timeline==
Line 196: Line 346:


===What the timeline is still missing===
===What the timeline is still missing===
[https://study.com/academy/lesson/what-is-hematology-definition-history.html], [http://www.hematology.org/About-ASH/50-Years.aspx], [https://pharmaceuticalintelligence.com/2014/12/05/the-history-of-hematology-and-related-sciences/]


===Timeline update strategy===
===Timeline update strategy===


==See also==
==See also==
* [[Timeline of transfusion medicine]]
* [[Timeline of hemophilia]]


==External links==
==External links==