Difference between revisions of "Timeline of epidemiology"
From Timelines
(→Full timeline) |
|||
Line 39: | Line 39: | ||
| 460–377 BC || Scientific development || {{w|Hippocrates}} is considered to be the first epidemiologist. In his three books entitled ''Epidemic I'', ''Epidemic III'' and ''On Airs, Waters and Places'', Hippocrates attempts to describe disease from a rational perspective, rather than a supernatural basis. Hippocrates observes that different diseases occur in different locations. He also notes that {{w|malaria}} and {{w|yellow fever}} most commonly occur in swampy areas. Hippocrates also introduces terms like ''epidemic'' and ''endemic''.<ref name="Historic Developments in Epidemiology">{{cite web|title=Historic Developments in Epidemiology|url=http://samples.jbpub.com/9780763766221/66221_CH02_5398.pdf|website=samples.jbpub.com|accessdate=26 December 2017}}</ref> || | | 460–377 BC || Scientific development || {{w|Hippocrates}} is considered to be the first epidemiologist. In his three books entitled ''Epidemic I'', ''Epidemic III'' and ''On Airs, Waters and Places'', Hippocrates attempts to describe disease from a rational perspective, rather than a supernatural basis. Hippocrates observes that different diseases occur in different locations. He also notes that {{w|malaria}} and {{w|yellow fever}} most commonly occur in swampy areas. Hippocrates also introduces terms like ''epidemic'' and ''endemic''.<ref name="Historic Developments in Epidemiology">{{cite web|title=Historic Developments in Epidemiology|url=http://samples.jbpub.com/9780763766221/66221_CH02_5398.pdf|website=samples.jbpub.com|accessdate=26 December 2017}}</ref> || | ||
|- | |- | ||
− | | 1546 || || Italian physician Girolamo Fracastoro publishes his writing on contagion and contagious diseases, proposing that diseases are each caused by a rapidly multiplying seed | + | | 1546 || Scientific development || Italian physician Girolamo Fracastoro publishes his writing on contagion and contagious diseases, proposing that diseases are each caused by a rapidly multiplying seed, and that the seeds are transmitted by direct contact, air, or contaminated garments. |
|- | |- | ||
| 1620–1674 || Scientific development || {{w|John Graunt}} describes disease occurrence and death with the use of systematic methods and develops and calculates life tables and life expectancy.<ref name="Historic Developments in Epidemiology"/> || | | 1620–1674 || Scientific development || {{w|John Graunt}} describes disease occurrence and death with the use of systematic methods and develops and calculates life tables and life expectancy.<ref name="Historic Developments in Epidemiology"/> || |
Revision as of 03:51, 1 February 2018
This is a timeline of epidemiology, attempting to describe the evolution of the field over time. Epidemiology has become a standard area of clinical science, and is the most fundamental basic science of public health.[1]
Contents
Big picture
Time period | Development summary |
---|---|
19th century | John Snow, Ignaz Semmelweis, Louis Pasteur, Robert Koch, Florence Nightingale, and others make important contributions to the field of epidemiology during the century. In the mid 1800s the focus of epidemiology is just on infectious diseases and epidemics.[1] By mid to late century, bacteria are being identified as major causes of diseases.[2] |
20th century | Epidemiology begins to focus on infectious diseases overall in the mid–century.[1] |
1960s | Epidemiology begins to focus on laws regarding the distribution of disease at a community level.[1] |
1980s | Late in the decade, epidemiology starts focusing on how to control or minimize health problems and diseases.[1] |
Epidemiologic transitions
An epidemiologic transition describes changing patterns of population age distributions, mortality, fertility, life expectancy, and causes of death.[1]
Transition | Development summary |
---|---|
Hunter–gatherer to cities | First epidemiologic transition, ocurring circa 10,000 BC with the advent the agricultural revolution. People become less dependent on hunting and gathering and begin producing food and domesticating animals. This brings the emergence of infectious diseases and diseases related to nutrition, caused by the new practice of agriculture and food production. This shift would bring zoonotic diseases, nutrient deficiencies and increased contact with disease vectors. Few epidemics turn into major epidemics. |
Immunologic resisteance and organism change | The second transition takes place at a time where human immune systems and disease-causing organisms both evolve, resulting in a change from major epidemics of disease to endemic disease. People develop physical and genetic changes that serve to minimize the effects of diseases.[1] |
Public health and sanitation | Disease patterns change from infectious to chronic and degenerative diseases in developed parts of the world due to improvements in nutrition, public health, and clinical medicine. Cardiovascular diseases and cancer begin to occur more during this transition. They are often associated with the longer lifespan and a sedentary lifestyle.[1] |
Increased globalization | There's a resurgence and rapid spread of infectious diseases.[1] Starting at the end of the 20th century, globalization provoques both new diseases and the reemergence of infectious ones occuring as well as the rapid spread of disease.[1] |
Full timeline
Year | Event type | Details | Country/geographical location |
---|---|---|---|
460–377 BC | Scientific development | Hippocrates is considered to be the first epidemiologist. In his three books entitled Epidemic I, Epidemic III and On Airs, Waters and Places, Hippocrates attempts to describe disease from a rational perspective, rather than a supernatural basis. Hippocrates observes that different diseases occur in different locations. He also notes that malaria and yellow fever most commonly occur in swampy areas. Hippocrates also introduces terms like epidemic and endemic.[2] | |
1546 | Scientific development | Italian physician Girolamo Fracastoro publishes his writing on contagion and contagious diseases, proposing that diseases are each caused by a rapidly multiplying seed, and that the seeds are transmitted by direct contact, air, or contaminated garments. | |
1620–1674 | Scientific development | John Graunt describes disease occurrence and death with the use of systematic methods and develops and calculates life tables and life expectancy.[2] | |
1624–1689 | Scientific development | Thomas Sydenham approaches the study of disease from an observational angle rather than a theoretical one.[2] | |
1754 | Scientific development | Scottish naval surgeon James Lind publishes A Treatise on Scurvy, in which he identifies the symptoms of scurvy and the fact that the disease becomes common in sailors after as little as a month at sea.[3] | United Kingdom |
c.1774 | English farmer/dairyman Benjamin Jesty notices his milkmaids never get smallpox, but cowpox from the cows. Jesty comes to the conclusion that there's a link between acquiring cowpox and not getting smallpox. Jesty would expose his wife and children to cowpox to protect them from smallpox, with success.[2][3] | ||
1807–1883 | Scientific development | British epidemiologist William Farr advances John Graunt's work in order to better describe epidemiologic problems.[2] | United Kingdom |
1850 | Lemuel Shattuck publishes the first report on sanitation and public health problems in the Commonwealth of Massachussets. This marks the beginning of epidemiology in the United States.[2] | United States | |
1854 | Scientific development | English physician John Snow demonstrates, during an epidemic in London, that the transmission of cholera is significantly reduced when uncontaminated water is provided to the population. Snow is considered one of the most important contributors to the field of epidemiology.[2] | United Kingdom |
1857 | Convention | The first quarantine convention is held in the Unied States. The prevention of typhus, cholera, and yellow fever is discussed. Port quarantine and the hygiene of immigrants are also of concern. Public health educational activities begin at this time.[2] | United States |
1870–1879 | Scientific development | German physician Robert Koch shows that anthrax is transmissible and reproducible in experimental animals (mice). The epidemiologic significance that Koch demonstrates is that the anthrax bacillus is the only organism that causes anthrax in a susceptible animal.[2] | Prussia |
1879 | Publication | A. H. Buck publishes Hygiene and Public Health, an early major book on public health, which includes epidemiologic topics.[2] | |
1886 | Scientific development | The first major epidemiologic implication of deficiency illness comes in this year when the Dutch commission the firm of C. A. Pekelharing and Winkler who sends army doctor Christian Eijkman to the East Indies to investigate the cause of beriberi. In site, Eijkman observes that chickens fed on polished rice develop symptoms of beriberi and recover promptly when the food is changed to whole rice. However, Eijkman would mistakenly attribute the cause of the disease to a neurotoxin.[2] | |
1887 | Treatment | Japanese naval surgeon T. K. Takaki eradicates beriberi from the Japanese navy by adding vegetables, meat, and fish to their diet, which until date was mostly rice.[2] | Japan |
1900 | Scientific development | The infectious nature of yellow fever is established.[2] | |
1906 | Policy | Standard methods of water analysis are adopted in the United States.[2] | United States |
1913 | Scientific development | The pasteurization of milk is shown to be effective in controlling the spread of disease.[2] | |
1913 | Organization | The Harvard School of Public Health is established as the first school of public health in the United States.[2] | United States |
1971 | Publication | Professor Abdel R. Omran, working at the University of North Carolina, writes “Conceptually, the theory of epidemiologic transition focuses on the complex change in patterns of health and disease and on the interactions between these patterns and their demographic, economic and sociologic determinants and consequences.” Since this publication, the theory of epidemiological transition would be adopted and prove useful in laying out an overarching perspective on changing demographic patterns.[4][5] | United States |
1985 | Publication | The European Journal of Epidemiology is founded as a forum on the epidemiology of communicable and non-communicable diseases and their control.[6] |
Meta information on the timeline
How the timeline was built
The initial version of the timeline was written by User:Sebastian.
Funding information for this timeline is available.
What the timeline is still missing
Timeline update strategy
See also
External links
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 "Introduction and History of Epidemiology". coursera.org. Retrieved 31 January 2018.
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 "Historic Developments in Epidemiology" (PDF). samples.jbpub.com. Retrieved 26 December 2017.
- ↑ 3.0 3.1 Introduction to Epidemiology (Merrill ed.). Retrieved 26 December 2017.
- ↑ "The Epidemiologic Transition: Changing Patterns of Mortality and Population Dynamics". journals.sagepub.com. Retrieved 26 December 2017.
- ↑ "Notes on Contributors". PMC 2690272. doi:10.1111/j.1468-0009.2005.00416.x. Retrieved 26 December 2017.
- ↑ "European Journal of Epidemiology". link.springer.com. Retrieved 1 February 2018.