Difference between revisions of "Timeline of large language models"

From Timelines
Jump to: navigation, search
Line 34: Line 34:
 
|-
 
|-
 
| 2022 || April || || OpenAI reveals DALL-E 2.  
 
| 2022 || April || || OpenAI reveals DALL-E 2.  
 +
|-
 +
| 2022 || September || || {{w|Nvidia}} announces the launch of its BioNeMo Large Language Model service to help researchers build new artificial intelligence models for biology.<ref>{{cite web |title=Nvidia boosts generative AI for biology with BioNeMo |url=https://venturebeat.com/ai/nvidia-boosts-generative-ai-for-biology-with-bionemo/#:~:text=In%20September%202022%2C%20Nvidia%20announced,yielded%20some%20strong%20early%20results. |website=VentureBeat |access-date=11 March 2023 |date=12 January 2023}}</ref>
 
|-
 
|-
 
| 2023 || January 5 || || A paper discusses the concern about the potential of LLMs to influence, modify, and manipulate user preferences adversarially. As these models become more proficient in deducing user preferences and offering tailored assistance, their lack of interpretability in adversarial settings is a major concern. The paper examines existing literature on adversarial behavior in user preferences and provides red teaming samples for dialogue models like ChatGPT and GODEL. It also probes the attention mechanism in these models for non-adversarial and adversarial settings.<ref>{{cite journal |last1=Subhash |first1=Varshini |title=Can Large Language Models Change User Preference Adversarially? |journal=arXiv:2302.10291 [cs] |date=5 January 2023 |doi=10.48550/arXiv.2302.10291 |url=https://arxiv.org/abs/2302.10291}}</ref>
 
| 2023 || January 5 || || A paper discusses the concern about the potential of LLMs to influence, modify, and manipulate user preferences adversarially. As these models become more proficient in deducing user preferences and offering tailored assistance, their lack of interpretability in adversarial settings is a major concern. The paper examines existing literature on adversarial behavior in user preferences and provides red teaming samples for dialogue models like ChatGPT and GODEL. It also probes the attention mechanism in these models for non-adversarial and adversarial settings.<ref>{{cite journal |last1=Subhash |first1=Varshini |title=Can Large Language Models Change User Preference Adversarially? |journal=arXiv:2302.10291 [cs] |date=5 January 2023 |doi=10.48550/arXiv.2302.10291 |url=https://arxiv.org/abs/2302.10291}}</ref>

Revision as of 10:22, 11 March 2023

This is a timeline of large language models, which consist in artificial intelligence (AI) systems that use deep learning techniques to process and generate human-like natural language.

Sample questions

The following are some interesting questions that can be answered by reading this timeline:

Big picture

Time period Development summary More details
2010–2017 Early years Period is characterized by the development of the first large-scale language models, such as the Google Ngram Corpus (2010) and the Microsoft Web N-gram Corpus (2013), which provides researchers with large datasets to train language models. During this period, researchers also develop new techniques for training neural language models, such as the use of recurrent neural networks (RNNs) and long short-term memory (LSTM) networks.
2017–2019 Emergence of transformers This period sees the emergence of the transformer architecture, which revolutionizes natural language processing and makes possible the development of larger and more powerful language models. In 2017, Vaswani et al. introduce the transformer architecture, which uses self-attention to model the relationships between words in a sentence. This architecture is used to develop the GPT (Generative Pre-trained Transformer) models by OpenAI, which would achieve state-of-the-art performance on a range of language tasks.
2019–present GPT-3 and beyond Period characterized by the development of even larger and more powerful language models, such as GPT-2 and GPT-3. In 2020, OpenAI releases GPT-3, which has 175 billion parameters, making it the largest language model to date. GPT-3 demonstrates impressive capabilities, such as the ability to generate coherent text, answer questions, and even write code. This period also sees the emergence of new research directions, such as using language models for unsupervised learning, few-shot learning, and transfer learning. By late 2022, LLMs becomes a sensation on the internet as OpenAI's ChatGPT acquires 1 million users within only 5 days of its release. The remarkable capabilities and extensive uses of ChatGPT can be attributed to the GPT-3 language model's 175 billion parameters.[1]

Full timeline

Year Month and date Event type Details
2019 August NVIDIA introduces Megatron-LM.[2] It is a library that is optimized and made efficient for training large language models. By using Megatron's model parallelism, it is possible to train language models with billions of weights, which can then be utilized in NeMo for downstream tasks.[3]
2020 June OpenAI releases GPT-3 as a service, powered by a 175-billion-parameter model that can generate text and code with short written prompts.[4]
2021 January 11 Wu Dao is released. It¿s among the top large language models by parameter size.[1]
2021 May Google anounces chatbot LaMDA, but doesn't release it publicly.
2022 March 21 NVIDIA and Microsoft introduce Megatron-Turing NLG 530B (The Pile). Megatron-Turing Natural Language Generation model (MT-NLG).[5]
2022 April OpenAI reveals DALL-E 2.
2022 September Nvidia announces the launch of its BioNeMo Large Language Model service to help researchers build new artificial intelligence models for biology.[6]
2023 January 5 A paper discusses the concern about the potential of LLMs to influence, modify, and manipulate user preferences adversarially. As these models become more proficient in deducing user preferences and offering tailored assistance, their lack of interpretability in adversarial settings is a major concern. The paper examines existing literature on adversarial behavior in user preferences and provides red teaming samples for dialogue models like ChatGPT and GODEL. It also probes the attention mechanism in these models for non-adversarial and adversarial settings.[7]
2023 February 9 A paper presents a collaborative design framework that combines interactive evolution and LLMs to simulate the human design process. The framework uses interactive evolution to exploit user feedback and LLMs for a complex creative task of recombining and varying ideas. The process begins with a brief and a set of candidate designs, generated by a language model or proposed by users. Users provide feedback to an interactive genetic algorithm that selects, recombines, and mutates the most promising designs. The framework was evaluated on three game design tasks with human designers collaborating remotely.[8]
2023 February 14 Study A paper presents a framework called ChatCAD, which integrates LLMs with computer-aided diagnosis (CAD) networks for medical images. ChatCAD uses LLMs to enhance the output of multiple CAD networks by summarizing and reorganizing the information presented in natural language text format. This approach merges the strengths of LLMs' medical domain knowledge and logical reasoning with the vision understanding capability of existing medical-image CAD models. The goal is to create a more user-friendly and understandable system for patients compared to conventional CAD systems. The paper suggests that LLMs can also be used to improve the performance of vision-based medical-image CAD models in the future.[9]
2023 February 17 Study A paper surveys the state of the art of hybrid language models architectures and strategies for complex question-answering (QA, CQA, CPS). While very large language models are good at leveraging public data on standard problems, they may require specific architecture, knowledge, skills, tasks, methods, sensitive data, performance, human approval, and versatile feedback to tackle more specific complex questions or problems. The paper identifies the key elements used with LLMs to solve complex questions or problems and discusses challenges associated with complex QA. The paper also reviews current solutions and promising strategies, using elements such as hybrid LLM architectures, human-in-the-loop reinforcement learning, prompting adaptation, neuro-symbolic and structured knowledge grounding, program synthesis, and others.[10]
2023 February 21 Study A paper presents a catalog of prompt engineering techniques in pattern form that have been applied successfully to solve common problems when conversing with large language models (LLMs), such as ChatGPT. Prompt patterns are reusable solutions to common problems faced when working with LLMs that can customize the outputs and interactions with an LLM. The paper provides a framework for documenting patterns for structuring prompts to solve a range of problems and presents a catalog of patterns that have been applied successfully to improve the outputs of LLM conversations. It also explains how prompts can be built from multiple patterns and illustrates prompt patterns that benefit from combination with other prompt patterns. The paper contributes to research on prompt engineering that applies LLMs to automate software development tasks.[11]
2023 February 24 Study A paper proposes a system called LLM-Augmenter that improves large language models by using external knowledge and automated feedback. The system adds plug-and-play modules to a black-box LLM to ground responses in external knowledge and iteratively improve responses using feedback generated by utility functions. The system is validated on task-oriented dialog and open-domain question answering, showing a significant reduction in hallucinations without sacrificing fluency and informativeness. The source code and models are publicly available.[12]
2023 February 27 A paper proposes a framework that simplifies reward design in reinforcement learning (RL) by using natural language as a proxy for the reward function. The framework prompts a large language model, such as GPT-3, to evaluate the agent's behavior against the desired behavior described in the prompt and outputs a corresponding reward signal. The RL agent uses this reward to update its behavior. The approach is evaluated in three tasks, and the results demonstrate that RL agents trained with the framework are well-aligned with the user's objectives and outperform RL agents trained with reward functions learned via supervised learning.[13]
2023 February 27 A paper discusses the development of a generative language model called SpikeGPT that uses spiking neural networks (SNNs) for more energy-efficient deep learning. While SNNs have been successful in computer vision tasks, their performance in language generation has been limited due to the challenge of training them. SpikeGPT overcomes this challenge by modifying the transformer block to reduce computational complexity and achieves competitive performance with non-spiking models on tested benchmarks while using 5x less energy consumption.[14]
2023 February 27 A paper introduces Kosmos-1, a Multimodal MLLM that can perceive general modalities, learn in context (i.e., few-shot), and follow instructions (i.e., zero-shot). The model is trained from scratch on web-scale multimodal corpora, including text and images, image-caption pairs, and text data. The model achieves impressive performance on language understanding, generation, and even OCR-free NLP (directly fed with document images), perception-language tasks, including multimodal dialogue, image captioning, visual question answering, and vision tasks such as image recognition with descriptions. The paper also shows that MLLMs can benefit from cross-modal transfer, i.e., transfer knowledge from language to multimodal, and from multimodal to language. A dataset of Raven IQ test is introduced, which diagnoses the nonverbal reasoning capability of MLLMs.[15]
2023 February 27 A paper proposes a method called "rectification" for reducing the risk of LLMs generating toxic discourses. The method is based on the probability that the finished discourse will be considered toxic, and advises against token selections proportional to this probability. The approach utilizes a separate but smaller model for detoxification and does not require access to the internal representations of the LLM. The method significantly improves the generated discourse compared to base LLMs and other techniques in terms of both language and detoxification performance, and can be applied to diverse LLMs that share the same vocabulary.[16]
2023 February 27 A paper discusses the use of open source code to train large language models (LLMs) and the potential security, privacy, and licensing implications of this practice. LLMs for code are commonly trained on large unsanitized corpora of source code scraped from the internet, leading to the memorization and verbatim emission of content by the models. The paper argues that the use of copyleft code to train LLMs is a legal and ethical dilemma, and provides four actionable recommendations to address this issue. Overall, the paper highlights the importance of considering the implications of using open source code in training LLMs.[17]
2023 February 28 GEMBA is presented as a GPT-based metric for evaluating translation quality both with and without a reference translation. The authors evaluate four prompt variants in two modes and investigate seven versions of GPT models, including ChatGPT. Their method achieves state-of-the-art accuracy in both modes compared to human labels and provides insight into the usefulness of pre-trained, generative large language models for translation quality assessment.[18]
2023 February 28 A paper discusses the potential use of large language models in psycholinguistics. The authors note that while these models are not detailed models of human linguistic processing, they are highly successful in their primary task of providing a model for language. They suggest that large language models can be useful in psycholinguistics as a practical tool, for comparative purposes, and philosophically, as a means of rethinking the relationship between language and thought.[19]
2023 February 28 A study proposes using LLMs for the automatic analysis of dream reports, specifically focusing on references to emotions. The authors use off-the-shelf and bespoke approaches and find that the bespoke text classification method achieves high performance and is robust against potential biases. This approach could find application in the analysis of large dream datasets and improve the reproducibility and comparability of results across studies. The study of dream content in dream research is typically performed through manual scoring of verbal reports provided by dreamers. This task is time-consuming and requires trained annotators.[20]
2023 February 28 A paper discusses In-Context Instruction Learning (ICIL), a new approach to instruction learning for LLMs that significantly improves zero-shot task generalization performance. ICIL uses a single fixed prompt that concatenates cross-task demonstrations to evaluate all tasks, and it is complementary to instruction-based fine-tuning. The authors demonstrate that ICIL improves the performance of both pretrained and instruction-fine-tuned models, including the most powerful instruction-fine-tuned baseline (text-davinci-003) by 9.3%.[21]
2023 March 1 Study A paper introduces a method to train language models like ChatGPT to understand concepts precisely using succinct representations based on category theory. The representations provide concept-wise invariance properties and a new learning algorithm that can accurately learn complex concepts or fix misconceptions. The approach also allows for the generation of a hierarchical decomposition of the representations, which can be manually verified by examining each part individually.[22]
2023 March 1 A study evaluates the value of domain adaptation in nuclear medicine by adapting language models for the purpose of 5-point Deauville score prediction based on clinical 18F-fluorodeoxyglucose (FDG) PET/CT reports. The researchers used multiple general-purpose transformer language models to classify the reports into Deauville scores 1-5, and then adapted the models to the nuclear medicine domain using masked language modeling. Domain adaptation improved the performance of all language models, and the best performing model (domain-adapted RoBERTa) achieved a five-class accuracy of 77.4%, which was better than the physician's performance (66%), the best vision model's performance (48.1%), and was similar to the multimodal model's performance (77.2%).[23]
2023 March 3 Study A paper proposes a framework called Prophet that uses answer heuristics to prompt LLMs for knowledge-based visual question answering (VQA). Previous methods used LLMs to acquire necessary knowledge for answering, but these methods did not fully activate the capacity of LLMs due to insufficient input information. Prophet trains a vanilla VQA model on a knowledge-based VQA dataset without external knowledge and extracts two types of answer heuristics: answer candidates and answer-aware examples. These answer heuristics are encoded into prompts to enhance the capacity of LLMs. Prophet outperforms existing state-of-the-art methods on two challenging knowledge-based VQA datasets, OK-VQA and A-OKVQA, delivering 61.1% and 55.7% accuracies on their testing sets, respectively.[24]
2023 March 6 Study A paper explores the potential of using LLMs as zero-shot human models for human-robot interaction (HRI). Human models are important for HRI, but they are challenging to create. LLMs have consumed vast amounts of human-generated text data and can be used as human models without prior knowledge or interaction data. The authors conducted experiments on three social datasets and found that LLMs can achieve performance comparable to purpose-built models, but there are limitations such as sensitivity to prompts and spatial/numerical reasoning issues. The authors demonstrate how LLM-based human models can be integrated into a social robot's planning process and applied in HRI scenarios through a case study on a simulated trust-based table-clearing task and a robot utensil-passing experiment. The results show that LLMs offer a promising approach to human modeling for HRI, but it is incomplete.[25]
2023 March 6 Study A paper proposes a perspective on prompts for LLMs that distinguishes between diegetic and non-diegetic prompts, and studies how users write with LLMs using different user interfaces. The results show that when the interface offered multiple suggestions and provided an option for non-diegetic prompting, participants preferred choosing from multiple suggestions over controlling them via non-diegetic prompts. When participants provided non-diegetic prompts it was to ask for inspiration, topics or facts. Single suggestions in particular were guided both with diegetic and non-diegetic information. The paper informs human-AI interaction with generative models by revealing that writing non-diegetic prompts requires effort, people combine diegetic and non-diegetic prompting, and they use their draft and suggestion timing to strategically guide LLMs.[26]
2023 March 7 A paper presents SynthIE, a method for synthetic data generation that LLMs to generate plausible text for structured outputs in the opposite direction. The authors demonstrate the effectiveness of this approach on closed information extraction, where collecting ground-truth data is challenging, and no satisfactory dataset exists to date. They synthetically generate a dataset of 1.8 million data points, demonstrate its superior quality compared to existing datasets in a human evaluation, and use it to fine-tune small models (220M and 770M parameters). The models they introduce outperform existing baselines of comparable size with a substantial gap in micro and macro F1 scores. Code, data, and models are available for reproducibility.[27]

Meta information on the timeline

How the timeline was built

The initial version of the timeline was written by FIXME.

Funding information for this timeline is available.

Feedback and comments

Feedback for the timeline can be provided at the following places:

  • FIXME

What the timeline is still missing

Timeline update strategy

See also

External links

References

  1. 1.0 1.1 "Large Language Model Training in 2023". research.aimultiple.com. Retrieved 11 March 2023. 
  2. "Megatron Unleashed: NVIDIA's NLP Model "Megatron-LM" is the Largest Transformer Ever Trained | Exxact Blog". www.exxactcorp.com. Retrieved 11 March 2023. 
  3. "NeMo Megatron — NVIDIA NeMo". docs.nvidia.com. Retrieved 11 March 2023. 
  4. Lee, Angie (26 January 2023). "What Are Large Language Models Used For and Why Are They Important?". NVIDIA Blog. Retrieved 11 March 2023. 
  5. "AI: Megatron the Transformer, and its related language models". Dr Alan D. Thompson – Life Architect. 24 September 2021. Retrieved 11 March 2023. 
  6. "Nvidia boosts generative AI for biology with BioNeMo". VentureBeat. 12 January 2023. Retrieved 11 March 2023. 
  7. Subhash, Varshini (5 January 2023). "Can Large Language Models Change User Preference Adversarially?". arXiv:2302.10291 [cs]. doi:10.48550/arXiv.2302.10291. 
  8. Lanzi, Pier Luca; Loiacono, Daniele (9 February 2023). "ChatGPT and Other Large Language Models as Evolutionary Engines for Online Interactive Collaborative Game Design". arXiv:2303.02155 [cs]. doi:10.48550/arXiv.2303.02155. 
  9. Wang, Sheng; Zhao, Zihao; Ouyang, Xi; Wang, Qian; Shen, Dinggang (2023). "ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using Large Language Models". doi:10.48550/arXiv.2302.07257. 
  10. Daull, Xavier; Bellot, Patrice; Bruno, Emmanuel; Martin, Vincent; Murisasco, Elisabeth (17 February 2023). "Complex QA and language models hybrid architectures, Survey". arXiv:2302.09051 [cs]. doi:10.48550/arXiv.2302.09051. 
  11. White, Jules; Fu, Quchen; Hays, Sam; Sandborn, Michael; Olea, Carlos; Gilbert, Henry; Elnashar, Ashraf; Spencer-Smith, Jesse; Schmidt, Douglas C. (21 February 2023). "A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT". arXiv:2302.11382 [cs]. doi:10.48550/arXiv.2302.11382. 
  12. Peng, Baolin; Galley, Michel; He, Pengcheng; Cheng, Hao; Xie, Yujia; Hu, Yu; Huang, Qiuyuan; Liden, Lars; Yu, Zhou; Chen, Weizhu; Gao, Jianfeng (1 March 2023). "Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback". arXiv:2302.12813 [cs]. doi:10.48550/arXiv.2302.12813. 
  13. Kwon, Minae; Xie, Sang Michael; Bullard, Kalesha; Sadigh, Dorsa (27 February 2023). "Reward Design with Language Models". arXiv:2303.00001 [cs]. doi:10.48550/arXiv.2303.00001. 
  14. Zhu, Rui-Jie; Zhao, Qihang; Eshraghian, Jason K. (28 February 2023). "SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks". arXiv:2302.13939 [cs]. doi:10.48550/arXiv.2302.13939. 
  15. Huang, Shaohan; Dong, Li; Wang, Wenhui; Hao, Yaru; Singhal, Saksham; Ma, Shuming; Lv, Tengchao; Cui, Lei; Mohammed, Owais Khan; Patra, Barun; Liu, Qiang; Aggarwal, Kriti; Chi, Zewen; Bjorck, Johan; Chaudhary, Vishrav; Som, Subhojit; Song, Xia; Wei, Furu (1 March 2023). "Language Is Not All You Need: Aligning Perception with Language Models". arXiv:2302.14045 [cs]. doi:10.48550/arXiv.2302.14045. 
  16. Cao, Meng; Fatemi, Mehdi; Cheung, Jackie Chi Kit; Shabanian, Samira (27 February 2023). "Systematic Rectification of Language Models via Dead-end Analysis". arXiv:2302.14003 [cs]. doi:10.48550/arXiv.2302.14003. 
  17. Al-Kaswan, Ali; Izadi, Maliheh (28 February 2023). "The (ab)use of Open Source Code to Train Large Language Models". arXiv:2302.13681 [cs]. doi:10.48550/arXiv.2302.13681. 
  18. Kocmi, Tom; Federmann, Christian (28 February 2023). "Large Language Models Are State-of-the-Art Evaluators of Translation Quality". arXiv:2302.14520 [cs]. doi:10.48550/arXiv.2302.14520. 
  19. Houghton, Conor; Kazanina, Nina; Sukumaran, Priyanka (28 February 2023). "Beyond the limitations of any imaginable mechanism: large language models and psycholinguistics". arXiv:2303.00077 [cs]. doi:10.48550/arXiv.2303.00077. Retrieved 10 March 2023. 
  20. Bertolini, Lorenzo; Elce, Valentina; Michalak, Adriana; Bernardi, Giulio; Weeds, Julie (28 February 2023). "Automatic Scoring of Dream Reports' Emotional Content with Large Language Models". arXiv:2302.14828 [cs]. doi:10.48550/arXiv.2302.14828. 
  21. Ye, Seonghyeon; Hwang, Hyeonbin; Yang, Sohee; Yun, Hyeongu; Kim, Yireun; Seo, Minjoon (28 February 2023). "In-Context Instruction Learning". arXiv:2302.14691 [cs]. doi:10.48550/arXiv.2302.14691. 
  22. Yuan, Yang (2023). "Succinct Representations for Concepts". doi:10.48550/arXiv.2303.00446. 
  23. Huemann, Zachary; Lee, Changhee; Hu, Junjie; Cho, Steve Y.; Bradshaw, Tyler (1 March 2023). "Domain-adapted large language models for classifying nuclear medicine reports". arXiv:2303.01258 [cs]. doi:10.48550/arXiv.2303.01258. 
  24. Shao, Zhenwei; Yu, Zhou; Wang, Meng; Yu, Jun (3 March 2023). "Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering". arXiv:2303.01903 [cs]. doi:10.48550/arXiv.2303.01903. 
  25. Zhang, Bowen; Soh, Harold (6 March 2023). "Large Language Models as Zero-Shot Human Models for Human-Robot Interaction". arXiv:2303.03548 [cs]. doi:10.48550/arXiv.2303.03548. 
  26. Dang, Hai; Goller, Sven; Lehmann, Florian; Buschek, Daniel (6 March 2023). "Choice Over Control: How Users Write with Large Language Models using Diegetic and Non-Diegetic Prompting". arXiv:2303.03199 [cs]. doi:10.1145/3544548.3580969. Retrieved 8 March 2023. 
  27. Josifoski, Martin; Sakota, Marija; Peyrard, Maxime; West, Robert (7 March 2023). "Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Information Extraction". arXiv:2303.04132 [cs]. doi:10.48550/arXiv.2303.04132.