Difference between revisions of "Timeline of water desalination"

From Timelines
Jump to: navigation, search
(Full timeline)
Line 40: Line 40:
 
| 1869 || Facility || The first water-distillation plant is built by the British government at {{w|Aden}} in Yemen, to supply ships stopping at the {{w|Red Sea}} port.<ref name="Desalinationbritannica.com"/> || {{w|Yemen}}
 
| 1869 || Facility || The first water-distillation plant is built by the British government at {{w|Aden}} in Yemen, to supply ships stopping at the {{w|Red Sea}} port.<ref name="Desalinationbritannica.com"/> || {{w|Yemen}}
 
|-
 
|-
| 1881 || || The world's first commercial traditional desalination plant is built in Sleima, Malta
+
| 1881 || Facility || The world's first commercial traditional desalination plant is built in Sleima, Malta. || {{w|Malta}}
 
|-
 
|-
| 1928 || || The world's first land-based distillation plant is built in Curaçao, Netherlands Antilles
+
| 1928 || Facility || The world's first land-based distillation plant is built in Curaçao, Netherlands Antilles. || {{w|Netherlands Antilles}}
 
|-
 
|-
 
| 1930 || Facility || The first large still to provide water for commercial purposes is built in Aruba.<ref name="Desalinationbritannica.com"/> || {{w|Aruba}}
 
| 1930 || Facility || The first large still to provide water for commercial purposes is built in Aruba.<ref name="Desalinationbritannica.com"/> || {{w|Aruba}}
 
|-
 
|-
| 1931 || || The term reverse osmosis is coined, and the process is patented as a method of desalting water.<ref name="Membrane Technology and Applications"/> ||  
+
| 1931 || Technology || The term reverse osmosis is coined, and the process is patented as a method of desalting water.<ref name="Membrane Technology and Applications"/> ||  
 
|-
 
|-
| 1950s || || Weirs of Cathcart in Scotland develop the multi-stage flash distillation process, which would have significant development and wide application throughout the next decade due to both to its economical scale and its ability to operate on low-grade steam.<ref>{{cite journal|last1=Shatat|first1=Mahmoud|last2=Riffat|first2=Saffa B.|title=Water desalination technologies utilizing conventional and renewable energy sources|journal=International Journal of Low-Carbon Technologies, Volume 9, Issue 1, 1 March 2014, Pages 1–19|url=https://academic.oup.com/ijlct/article/9/1/1/663897|accessdate=17 February 2018}}</ref> || {{w|United Kingdom}}
+
| 1950s || Technology || Weirs of Cathcart in Scotland develop the multi-stage flash distillation process, which would have significant development and wide application throughout the next decade due to both to its economical scale and its ability to operate on low-grade steam.<ref>{{cite journal|last1=Shatat|first1=Mahmoud|last2=Riffat|first2=Saffa B.|title=Water desalination technologies utilizing conventional and renewable energy sources|journal=International Journal of Low-Carbon Technologies, Volume 9, Issue 1, 1 March 2014, Pages 1–19|url=https://academic.oup.com/ijlct/article/9/1/1/663897|accessdate=17 February 2018}}</ref> || {{w|United Kingdom}}
 
|-
 
|-
| 1952 || || The United States Congress passes “The Saline Water Act” to provide federal support for desalination.<ref name="Desalination plant history"/> || {{w|United States}}
+
| 1952 || Law || The United States Congress passes “The Saline Water Act” to provide federal support for desalination.<ref name="Desalination plant history"/> || {{w|United States}}
 
|-
 
|-
 
| 1954 || Facility || The first desalination plant opens in {{w|Qatar}}.<ref>{{cite web|title=Historical Background|url=http://countrystudies.us/persian-gulf-states/68.htm|website=countrystudies.us|accessdate=17 February 2018}}</ref> || {{w|Qatar}}
 
| 1954 || Facility || The first desalination plant opens in {{w|Qatar}}.<ref>{{cite web|title=Historical Background|url=http://countrystudies.us/persian-gulf-states/68.htm|website=countrystudies.us|accessdate=17 February 2018}}</ref> || {{w|Qatar}}
 
|-
 
|-
| 1955 || || Multi-stage flash distillation (MSF) appears as the first large-scale modern desalination process.<ref name="A short history of desalination">{{cite web|title=A short history of desalination|url=http://www.theenergyofchange.com/short-history-of-desalination|website=theenergyofchange.com|accessdate=16 February 2018}}</ref> || {{w|United States}}  
+
| 1955 || Technology || Multi-stage flash distillation (MSF) appears as the first large-scale modern desalination process.<ref name="A short history of desalination">{{cite web|title=A short history of desalination|url=http://www.theenergyofchange.com/short-history-of-desalination|website=theenergyofchange.com|accessdate=16 February 2018}}</ref> || {{w|United States}}  
 
|-
 
|-
| 1957 || || The first multi stage flash distillation plant is built in Kuwait
+
| 1957 || Facility || The first multi stage flash distillation plant is built in Kuwait. || {{w|Kuwait}}
 
|-
 
|-
| 1959 || || Desalination capability of cellulose acetate film is demonstrated by Breton and Reid.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Water Desalination History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
+
| 1959 || Scientific development || Desalination capability of cellulose acetate film is demonstrated by Breton and Reid.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Water Desalination History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
 
|-
 
|-
| 1959 || || The first multi-effect distillation (MED) plant is constructed.<ref name="A short history of desalination"/> || {{w|Aruba}}
+
| 1959 || Facility || The first multi-effect distillation (MED) plant is constructed.<ref name="A short history of desalination"/> || {{w|Aruba}}
 
|-
 
|-
| 1960 || || The first synthetic and functional reverse osmosis membrane is produced at the University of California, made from cellulose acetate. This membrane is capable of blocking the salts while allowing water to pass through it at a reasonable rate of flow under high pressure.<ref name="Water Desalination History, Advances, and Challenges"/> ||
+
| 1960 || Technology || The first synthetic and functional reverse osmosis membrane is produced at the {{w|University of California}}, made from cellulose acetate. This membrane is capable of blocking the salts while allowing water to pass through it at a reasonable rate of flow under high pressure.<ref name="Water Desalination History, Advances, and Challenges"/> ||
 
|-
 
|-
| 1960-1965 || || Electrodialysis is commercially introduced, providing a cost-effective way to desalt brackish water and spurring considerable interest in the whole field if using desalting technologies to produce potable water for municipal use.<ref name="Water desalination technologies utilizing conventional and renewable energy sources">{{cite journal|last1=Shatat|first1=Mahmoud|last2=Riffat|first2=Saffa B.|title=Water desalination technologies utilizing conventional and renewable energy sources|doi=10.1093/ijlct/cts025|url=https://academic.oup.com/ijlct/article/9/1/1/663897|accessdate=16 February 2018}}</ref> ||
+
| 1960-1965 || Technology || {{w|Electrodialysis}} is commercially introduced, providing a cost-effective way to desalt brackish water and spurring considerable interest in the whole field if using desalting technologies to produce potable water for municipal use.<ref name="Water desalination technologies utilizing conventional and renewable energy sources">{{cite journal|last1=Shatat|first1=Mahmoud|last2=Riffat|first2=Saffa B.|title=Water desalination technologies utilizing conventional and renewable energy sources|doi=10.1093/ijlct/cts025|url=https://academic.oup.com/ijlct/article/9/1/1/663897|accessdate=16 February 2018}}</ref> ||
 
|-
 
|-
| 1962 || || Asymmetric cellulose acetate membrane is developed.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
+
| 1962 || Technology || Asymmetric cellulose acetate membrane is developed.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
 
|-
 
|-
| 1963 || || Loeb and Sourirajan at the University of California in Los Angeles, show that an asymmetric cellulose acetate membrane can be used for desalination. The permeabilities of these early membranes are low and RO membranes are considered a novelty separation technique rather than a soution to desalination.<ref name="Water Desalination History, Advances, and Challenges"/><ref name="Current challenges in energy recovery for desalination"/> || {{w|United States}}
+
| 1963 || Scientific development || Loeb and Sourirajan at the {{w|University of California in Los Angeles}} show that an asymmetric cellulose acetate membrane can be used for desalination. The permeabilities of these early membranes are low and RO membranes are considered a novelty separation technique rather than a soution to desalination.<ref name="Water Desalination History, Advances, and Challenges"/><ref name="Current challenges in energy recovery for desalination"/> || {{w|United States}}
 
|-
 
|-
| 1963 || || First practical spiral-wound module is developed by General Atomics.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
+
| 1963 || Facility || First practical spiral-wound module is developed by General Atomics.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
 
|-
 
|-
| 1964 || || In Spain, the first desalination plant is constructed in Lanzarote.<ref name="A short history of desalination"/> || {{w|Spain}}
+
| 1964 || Facility || In Spain, the first desalination plant is constructed in Lanzarote.<ref name="A short history of desalination"/> || {{w|Spain}}
 
|-
 
|-
| 1965 || || The first commercial desalination plant using reverse osmosis is inaugurated in California at the Coalinga desalination plant, used for brackish water.<ref name="Water Desalination History, Advances, and Challenges"/> || {{w|United States}}
+
| 1965 || Facility || The first commercial desalination plant using reverse osmosis is inaugurated in California at the Coalinga desalination plant, used for brackish water.<ref name="Water Desalination History, Advances, and Challenges"/> || {{w|United States}}
 
|-
 
|-
| 1965 || || An 1 MGD (3,785 m3/year) MSF dual-purpose plant starts operating in Eilat, Israel, with an atual water cost amounted to about $0.3m3. The relatively low cost is due to the very low fuel-oil prices if $10-15/ton prevailing at the time.<ref name="History of Desalination Cost Estimations">{{cite web|last1=Glueckstern|first1=Pinhas|title=History of Desalination Cost Estimations|url=http://gwri-ic.technion.ac.il/pdf/IDS/71.pdf|website=gwri-ic.technion.ac.il|accessdate=16 February 2018}}</ref> ||
+
| 1965 || Facility || An 1 MGD (3,785 m3/year) MSF dual-purpose plant starts operating in {{w|Eilat}}, Israel, with an atual water cost amounted to about $0.3m3. The relatively low cost is due to the very low fuel-oil prices if $10-15/ton prevailing at the time.<ref name="History of Desalination Cost Estimations">{{cite web|last1=Glueckstern|first1=Pinhas|title=History of Desalination Cost Estimations|url=http://gwri-ic.technion.ac.il/pdf/IDS/71.pdf|website=gwri-ic.technion.ac.il|accessdate=16 February 2018}}</ref> || {{w|Israel}}
 
|-
 
|-
| c.1965 || || Virtually all the world's seawater desalination capacity (about 1,000 m3/day) is in the {{w|Middle East}} and is produced by multistage flash (MSF) distillation.<ref name="Current challenges in energy recovery for desalination"/> ||
+
| c.1965 || Production || Virtually all the world's seawater desalination capacity (about 1,000 m3/day) is in the {{w|Middle East}} and is produced by multistage flash (MSF) distillation.<ref name="Current challenges in energy recovery for desalination"/> ||
 
|-
 
|-
| 1966 || || ''Desalination'', the first international journal for desalting and purification of water, is founded by {{w|Miriam Balaban}}.<ref>{{cite web|title=Introduction to the special issue honoring Miriam Balaban|url=https://www.deepdyve.com/lp/elsevier/introduction-to-the-special-issue-honoring-miriam-balaban-UKddpJ2qNB|website=eepdyve.com|accessdate=17 February 2018}}</ref> ||  
+
| 1966 || Publication || ''Desalination'', the first international journal for desalting and purification of water, is founded by {{w|Miriam Balaban}}.<ref>{{cite web|title=Introduction to the special issue honoring Miriam Balaban|url=https://www.deepdyve.com/lp/elsevier/introduction-to-the-special-issue-honoring-miriam-balaban-UKddpJ2qNB|website=eepdyve.com|accessdate=17 February 2018}}</ref> ||  
 
|-
 
|-
| 1966 || || Israel publishes a joint feasibility study of a 200 MW - 100 MGD (378,500 m3/year) nuclear dual-purpose plant.<ref name="History of Desalination Cost Estimations"/> ||
+
| 1966 || Publication || Israel publishes a joint feasibility study of a 200 MW - 100 MGD (378,500 m3/year) nuclear dual-purpose plant.<ref name="History of Desalination Cost Estimations"/> ||
 
|-
 
|-
 
| 1967 || Technology || The first commercially successful hollow fiber module is released.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
 
| 1967 || Technology || The first commercially successful hollow fiber module is released.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
Line 100: Line 100:
 
| 1998 || Facility || Grace-Davison and Mobil install the first large hyperfiltration solvent separation plant at Beaumont Texas refinery.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
 
| 1998 || Facility || Grace-Davison and Mobil install the first large hyperfiltration solvent separation plant at Beaumont Texas refinery.<ref name="Water Desalination: History, Advances, and Challenges"/><ref name="Membrane Technology and Applications"/> ||
 
|-
 
|-
| 2005 || || More than 10,500 desalination plants producing a total of more than 55 billion litres (in excess of 14.6 billion gallons) of potable water per day are in operation throughout the world.<ref name="Desalinationbritannica.com"/> ||
+
| 2005 || Production || More than 10,500 desalination plants producing a total of more than 55 billion litres (in excess of 14.6 billion gallons) of potable water per day are in operation throughout the world.<ref name="Desalinationbritannica.com"/> ||
 
|-
 
|-
 
| 2009 || Facility || The current largest desalination plant in the world is commissioned in Hadera, Israel. Built at a cost of around US$500 million, it uses reverse osmosis.<ref name="Desalination plant history">{{cite web|title=Desalination plant history|url=https://www.preceden.com/timelines/332386-desalination-plant-history|website=preceden.com|accessdate=17 February 2018}}</ref><ref>{{cite web|title=Hadera Desalination Plant|url=http://www.water-technology.net/projects/hadera-desalination/|website=water-technology.net|accessdate=4 March 2018}}</ref><ref>{{cite web|title=Hadera Desalination Plant|url=http://www.ide-tech.com/blog/b_case_study/hadera-project/|website=ide-tech.com|accessdate=4 March 2018}}</ref><ref>{{cite web|title=Hadera Desalination Plant|url=https://www.technologyreview.com/s/534996/megascale-desalination/|website=technologyreview.com|accessdate=4 March 2018}}</ref> || {{w|Israel}}
 
| 2009 || Facility || The current largest desalination plant in the world is commissioned in Hadera, Israel. Built at a cost of around US$500 million, it uses reverse osmosis.<ref name="Desalination plant history">{{cite web|title=Desalination plant history|url=https://www.preceden.com/timelines/332386-desalination-plant-history|website=preceden.com|accessdate=17 February 2018}}</ref><ref>{{cite web|title=Hadera Desalination Plant|url=http://www.water-technology.net/projects/hadera-desalination/|website=water-technology.net|accessdate=4 March 2018}}</ref><ref>{{cite web|title=Hadera Desalination Plant|url=http://www.ide-tech.com/blog/b_case_study/hadera-project/|website=ide-tech.com|accessdate=4 March 2018}}</ref><ref>{{cite web|title=Hadera Desalination Plant|url=https://www.technologyreview.com/s/534996/megascale-desalination/|website=technologyreview.com|accessdate=4 March 2018}}</ref> || {{w|Israel}}

Revision as of 20:43, 3 March 2018

This is a timeline of water desalination.

Big picture

Time period Development summary
16th century Desalination contraptions based on evaporation are incorporated into boats, allowing them to be self-sufficient in the event of an emergency.[1]
19th century Distillation is commercialized by companies such as Caird & Rayner (a brand which still exists today), with firms located in various countries such as the United Kingdom, France, Germany and the United States.[2] In the late century, the first major technical advance in desalination technology is the development of the Multiple Effect Distillation (MED) process.[2]
1930s Thermal distillation begins use in several large plants, primarily in the Middle East.[3]
1950s Scientists begin looking at alternatives to thermal desalination by studying membrane processes. Electrodialysis (ED) is the first of these processes to be developed commercially.[2]
1960s Membrane technologies arise as a result of a breakthrough in the use of polymer films for separating salt from water in the late 1950s and early 1960s.[1] Anisotropic cellulose acetate membranes are the industry standard through the decade.[4] By the late 1960s, commercial desalination systems producing up to 8,000 m3/day begin to be installed in various parts of the world.[2]
1970s Fuel oil cost increases very sharply, affecting strongly the desalination cost, especially in processes with high specific energy consumption. A great effort is made in many countries to shift from desalination by distillation to desalination by other means.[5] Low-pressure multi-effect distillation (MED) and improved reverse osmosis (RO) evolve as two new technologies capable to desalt seawater.[5] The introduction of isobaric energy recovery technology significantly reduces the operating costs of seawater reverse osmosis.[2] By the second half of the decade, the reverse osmosis process is considered in many regional developing programs as an option for small and large seawater desalination plants.[5] Larger scale commercial reverse osmosis and electrodialysis/electrodialysis reversal systems begin to be used more extensively.[2]
1980s Desalination technology becomes a fully commercial enterprise.[2] Synthetic membranes begin to play an increasingly crucial role in water desalination. Membrane distillation develops commercially on a small scale during the decade.[6] In the mid-1980s, low-pressure nanofiltration membranes are introduced by all of the major reverse osmosis companies.[4]
1990s The use of reverse osmosis desalination technologies for municipal water supplies becomes commonplace.[2] The continuous improvement and cost reduction in RO technology increases, in most cases, the economic benefits of SWRO over the distillation process.[5]
Recent years Today, desalination can be achieved by using thermal or membrane processes, or a hybrid combination.[2]

Full timeline

Year Event type Details Geographical location
400 BC–300 BC In his Meteorologica, Aristotle writes that "Salt water when it turns into vapour becomes sweet and the vapour does not form salt water again when it condenses".[3][2][7]
1850s Pfeffer, Traube and others study osmotic phenomena with ceramic membranes.[4]
1869 The first patent for a desalination process was granted in England.[7] United Kingdom
1869 Facility The first water-distillation plant is built by the British government at Aden in Yemen, to supply ships stopping at the Red Sea port.[7] Yemen
1881 Facility The world's first commercial traditional desalination plant is built in Sleima, Malta. Malta
1928 Facility The world's first land-based distillation plant is built in Curaçao, Netherlands Antilles. Netherlands Antilles
1930 Facility The first large still to provide water for commercial purposes is built in Aruba.[7] Aruba
1931 Technology The term reverse osmosis is coined, and the process is patented as a method of desalting water.[4]
1950s Technology Weirs of Cathcart in Scotland develop the multi-stage flash distillation process, which would have significant development and wide application throughout the next decade due to both to its economical scale and its ability to operate on low-grade steam.[8] United Kingdom
1952 Law The United States Congress passes “The Saline Water Act” to provide federal support for desalination.[9] United States
1954 Facility The first desalination plant opens in Qatar.[10] Qatar
1955 Technology Multi-stage flash distillation (MSF) appears as the first large-scale modern desalination process.[11] United States
1957 Facility The first multi stage flash distillation plant is built in Kuwait. Kuwait
1959 Scientific development Desalination capability of cellulose acetate film is demonstrated by Breton and Reid.[3][1][4]
1959 Facility The first multi-effect distillation (MED) plant is constructed.[11] Aruba
1960 Technology The first synthetic and functional reverse osmosis membrane is produced at the University of California, made from cellulose acetate. This membrane is capable of blocking the salts while allowing water to pass through it at a reasonable rate of flow under high pressure.[1]
1960-1965 Technology Electrodialysis is commercially introduced, providing a cost-effective way to desalt brackish water and spurring considerable interest in the whole field if using desalting technologies to produce potable water for municipal use.[6]
1962 Technology Asymmetric cellulose acetate membrane is developed.[3][4]
1963 Scientific development Loeb and Sourirajan at the University of California in Los Angeles show that an asymmetric cellulose acetate membrane can be used for desalination. The permeabilities of these early membranes are low and RO membranes are considered a novelty separation technique rather than a soution to desalination.[1][2] United States
1963 Facility First practical spiral-wound module is developed by General Atomics.[3][4]
1964 Facility In Spain, the first desalination plant is constructed in Lanzarote.[11] Spain
1965 Facility The first commercial desalination plant using reverse osmosis is inaugurated in California at the Coalinga desalination plant, used for brackish water.[1] United States
1965 Facility An 1 MGD (3,785 m3/year) MSF dual-purpose plant starts operating in Eilat, Israel, with an atual water cost amounted to about $0.3m3. The relatively low cost is due to the very low fuel-oil prices if $10-15/ton prevailing at the time.[5] Israel
c.1965 Production Virtually all the world's seawater desalination capacity (about 1,000 m3/day) is in the Middle East and is produced by multistage flash (MSF) distillation.[2]
1966 Publication Desalination, the first international journal for desalting and purification of water, is founded by Miriam Balaban.[12]
1966 Publication Israel publishes a joint feasibility study of a 200 MW - 100 MGD (378,500 m3/year) nuclear dual-purpose plant.[5]
1967 Technology The first commercially successful hollow fiber module is released.[3][4]
1972 Technology The interfacial composite membrane is developed.[3]
1974 Facility The first sea water reverse osmosis desalination plant comes into operation.[11] Bermuda
1975 Facility A large seawater desalination plant is built in Jiddah, using interfacial composite membranes, introduced by Fluid Systems. The construction of the plant is considered a milestone in reverse osmosis development.[3][4] Saudi Arabia
1978 Technology The first fully aromatic thin film composite (FT-30) is developed.[3][4]
1981 Technology John Cadotte patents the design for the three-layer TFC membrane that would later become industry standard. The layer provides high permeability while maintaining selectivity for water.[1][13][14][15]
1986 Technology Low pressure nanofiltration membrane becomes widely available.[3][4]
1998 Facility Grace-Davison and Mobil install the first large hyperfiltration solvent separation plant at Beaumont Texas refinery.[3][4]
2005 Production More than 10,500 desalination plants producing a total of more than 55 billion litres (in excess of 14.6 billion gallons) of potable water per day are in operation throughout the world.[7]
2009 Facility The current largest desalination plant in the world is commissioned in Hadera, Israel. Built at a cost of around US$500 million, it uses reverse osmosis.[9][16][17][18] Israel
2010 Production The largest producers of desalinated water are Saudi Arabia, accounting for about 17 percent of total global output, and the United Arab Emirates, with 13.4 percent. The United States is third, accounting for roughly 13 percent of the total output (mostly in Florida, Texas, and California).[7]
2014 Production As of 2014, the Kingdom of Saudi Arabia is the largest desalinated water producer in the world, and it currently produces about one-fifth of the world productions.[19] Saudi Arabia

Meta information on the timeline

How the timeline was built

The initial version of the timeline was written by User:Sebastian.

Funding information for this timeline is available.

What the timeline is still missing

[1] [2] [3] [4] [5] [6] [7]

Timeline update strategy

See also

External links

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 KUMAR, MANISH; CULP, TYLER; SHEN, YUEXIAO. "Water Desalination History, Advances, and Challenges". nae.edu. Retrieved 16 February 2018. 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 "Current challenges in energy recovery for desalination". filtsep.com. Retrieved 17 February 2018. 
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 KUMAR, MANISH; CULP, TYLER; SHEN, YUEXIAO. "Water Desalination: History, Advances, and Challenges". nap.edu. Retrieved 16 February 2018. 
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 Baker, Richard W. Membrane Technology and Applications. Retrieved 17 February 2018. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Glueckstern, Pinhas. "History of Desalination Cost Estimations" (PDF). gwri-ic.technion.ac.il. Retrieved 16 February 2018. 
  6. 6.0 6.1 Shatat, Mahmoud; Riffat, Saffa B. "Water desalination technologies utilizing conventional and renewable energy sources". doi:10.1093/ijlct/cts025. Retrieved 16 February 2018. 
  7. 7.0 7.1 7.2 7.3 7.4 7.5 "Desalination". britannica.com. Retrieved 17 February 2018. 
  8. Shatat, Mahmoud; Riffat, Saffa B. "Water desalination technologies utilizing conventional and renewable energy sources". International Journal of Low-Carbon Technologies, Volume 9, Issue 1, 1 March 2014, Pages 1–19. Retrieved 17 February 2018. 
  9. 9.0 9.1 "Desalination plant history". preceden.com. Retrieved 17 February 2018. 
  10. "Historical Background". countrystudies.us. Retrieved 17 February 2018. 
  11. 11.0 11.1 11.2 11.3 "A short history of desalination". theenergyofchange.com. Retrieved 16 February 2018. 
  12. "Introduction to the special issue honoring Miriam Balaban". eepdyve.com. Retrieved 17 February 2018. 
  13. "High-flux reverse osmosis membranes incorporated with hydrophilic additives for brackish water desalination". docslide.com.br. Retrieved 4 March 2018. 
  14. Zhao, Lin. "ADVANCED REVERSE OSMOSIS MEMBRANES FOR DESALINATION AND INORGANIC/POLYMER COMPOSITE MEMBRANES FOR CO2 CAPTURE". etd.ohiolink.edu. Retrieved 4 March 2018. 
  15. "BRIDGE. The FRONTIERS OF ENGINEERING. Computational Near-Eye Displays: Engineering the Interface to the Digital World Gordon Wetzstein". docplayer.net. Retrieved 4 March 2018. 
  16. "Hadera Desalination Plant". water-technology.net. Retrieved 4 March 2018. 
  17. "Hadera Desalination Plant". ide-tech.com. Retrieved 4 March 2018. 
  18. "Hadera Desalination Plant". technologyreview.com. Retrieved 4 March 2018. 
  19. Ouda, Omar K.M. "Domestic water demand in Saudi Arabia: assessment of desalinated water as strategic supply source". tandfonline.com. Retrieved 17 February 2018.