Difference between revisions of "Timeline of antibiotics"
From Timelines
Line 92: | Line 92: | ||
|- | |- | ||
| 1950 || Resistance || Resistance against {{w|chloramphenicol}} is observed.<ref name="Evolution in Health and Disease">{{cite book|last1=Stearns|first1=Stephen C.|last2=Koella|first2=Jacob C.|title=Evolution in Health and Disease|publisher=Evolution in Health and Disease|url=https://books.google.com.ar/books?id=d_-0LsF3OBsC&pg=PA126&dq=%22in+1952%22+%22erythromycin%22&hl=en&sa=X&ved=0ahUKEwjM_q6Gkt7ZAhXEE5AKHeKhBJEQ6AEILTAB#v=onepage&q=%22in%201952%22%20%22erythromycin%22&f=false}}</ref> || | | 1950 || Resistance || Resistance against {{w|chloramphenicol}} is observed.<ref name="Evolution in Health and Disease">{{cite book|last1=Stearns|first1=Stephen C.|last2=Koella|first2=Jacob C.|title=Evolution in Health and Disease|publisher=Evolution in Health and Disease|url=https://books.google.com.ar/books?id=d_-0LsF3OBsC&pg=PA126&dq=%22in+1952%22+%22erythromycin%22&hl=en&sa=X&ved=0ahUKEwjM_q6Gkt7ZAhXEE5AKHeKhBJEQ6AEILTAB#v=onepage&q=%22in%201952%22%20%22erythromycin%22&f=false}}</ref> || | ||
− | |||
− | |||
|- | |- | ||
| 1952 || Introduction || {{w|Lincosamides}} are introduced.<ref name="Antibiotics armageddon?"/> || | | 1952 || Introduction || {{w|Lincosamides}} are introduced.<ref name="Antibiotics armageddon?"/> || | ||
Line 99: | Line 97: | ||
| 1952 || Introduction || Antibiotic {{w|thiamphenicol}} is first synthesized.<ref>{{cite journal|last1=Wright|first1=Peter M.|last2=Seiple|first2=Ian B.|last3=Myers|first3=Andrew G.|title=The Evolving Role of Chemical Synthesis in Antibacterial Drug Discovery|doi=10.1002/anie.201310843|pmid=24990531|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536949/|pmc=4536949}}</ref> || | | 1952 || Introduction || Antibiotic {{w|thiamphenicol}} is first synthesized.<ref>{{cite journal|last1=Wright|first1=Peter M.|last2=Seiple|first2=Ian B.|last3=Myers|first3=Andrew G.|title=The Evolving Role of Chemical Synthesis in Antibacterial Drug Discovery|doi=10.1002/anie.201310843|pmid=24990531|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536949/|pmc=4536949}}</ref> || | ||
|- | |- | ||
− | | 1952 || Introduction || {{w|Eli Lilly and Company}} introduces {{w|erythromycin}}, an antibiotic useful for the treatment of a number of bacterial infections, including {{w|respiratory tract infections}}, {{w|skin infections}}, {{w|chlamydia infections}}, {{w|pelvic inflammatory disease}}, and {{w|syphilis}}.<ref>{{cite book|last1=Rubin|first1=Bruce K.|last2=Tamaoki|first2=Jun|title=Antibiotics as Anti-Inflammatory and Immunomodulatory Agents|url=https://books.google.com.ar/books?id=YY6GBWpVV3sC&pg=PR11&dq=%22in+1952%22+%22erythromycin%22&hl=en&sa=X&ved=0ahUKEwjOxITKtoPaAhUD3FMKHWpoA5MQ6AEITTAG#v=onepage&q=%22in%201952%22%20%22erythromycin%22&f=false}}</ref><ref>{{cite book|last1=Piscitelli|first1=Stephen C.|last2=Rodvold|first2=Keith A.|last3=Pai|first3=Manjunath P.|title=Drug Interactions in Infectious Diseases|url=https://books.google.com.ar/books?id=94x8C5pbhqoC&pg=PA243&dq=%22in+1952%22+%22erythromycin%22&hl=en&sa=X&ved=0ahUKEwjOxITKtoPaAhUD3FMKHWpoA5MQ6AEISDAF#v=onepage&q=%22in%201952%22%20%22erythromycin%22&f=false}}</ref><ref>{{cite book|last1=Nightingale|last2=Mur|title=Antimicrobial Pharmacodynamics in Theory and Clinical Practice, Second Edition|url=https://books.google.com.ar/books?id=sXf42EROuhEC&pg=PA217&dq=%22in+1952%22+%22erythromycin%22&hl=en&sa=X&ved=0ahUKEwjOxITKtoPaAhUD3FMKHWpoA5MQ6AEIQTAE#v=onepage&q=%22in%201952%22%20%22erythromycin%22&f=false}}</ref> || {{w|United States}} | + | | 1952 || Introduction || {{w|Eli Lilly and Company}} introduces {{w|erythromycin}}, an antibiotic useful for the treatment of a number of bacterial infections, including {{w|respiratory tract infections}}, {{w|skin infections}}, {{w|chlamydia infections}}, {{w|pelvic inflammatory disease}}, and {{w|syphilis}}.<ref>{{cite book|last1=Rubin|first1=Bruce K.|last2=Tamaoki|first2=Jun|title=Antibiotics as Anti-Inflammatory and Immunomodulatory Agents|url=https://books.google.com.ar/books?id=YY6GBWpVV3sC&pg=PR11&dq=%22in+1952%22+%22erythromycin%22&hl=en&sa=X&ved=0ahUKEwjOxITKtoPaAhUD3FMKHWpoA5MQ6AEITTAG#v=onepage&q=%22in%201952%22%20%22erythromycin%22&f=false}}</ref><ref>{{cite book|last1=Piscitelli|first1=Stephen C.|last2=Rodvold|first2=Keith A.|last3=Pai|first3=Manjunath P.|title=Drug Interactions in Infectious Diseases|url=https://books.google.com.ar/books?id=94x8C5pbhqoC&pg=PA243&dq=%22in+1952%22+%22erythromycin%22&hl=en&sa=X&ved=0ahUKEwjOxITKtoPaAhUD3FMKHWpoA5MQ6AEISDAF#v=onepage&q=%22in%201952%22%20%22erythromycin%22&f=false}}</ref><ref>{{cite book|last1=Nightingale|last2=Mur|title=Antimicrobial Pharmacodynamics in Theory and Clinical Practice, Second Edition|url=https://books.google.com.ar/books?id=sXf42EROuhEC&pg=PA217&dq=%22in+1952%22+%22erythromycin%22&hl=en&sa=X&ved=0ahUKEwjOxITKtoPaAhUD3FMKHWpoA5MQ6AEIQTAE#v=onepage&q=%22in%201952%22%20%22erythromycin%22&f=false}}</ref> Erythromycin is the first macrolide antibiotic.<ref name="Nomenclature for Macrolide and Macrolide-Lincosamide-Streptogramin B Resistance Determinants">{{cite journal|last1=Roberts|first1=Marilyn C.|last2=Sutcliffe|first2=Joyce|last3=Courvalin|first3=Patrice|last4=Jensen|first4=Lars Bogo|last5=Rood|first5=Julian|last6=Seppala|first6=Helena|title=Nomenclature for Macrolide and Macrolide-Lincosamide-Streptogramin B Resistance Determinants|url=http://aac.asm.org/content/43/12/2823.full?site=AntimicrobAgentsChemother&utm_source=TrendMDAntimicrobAgentsChemother&utm_medium=trendmdantimicrobagentschemother&utm_campaign=TrendMD_AACCLIN_0}}</ref> || {{w|United States}} |
|- | |- | ||
| 1952 || Introduction || {{w|Streptogramin}}s are introduced. Streptogramins are effective in the treatment of {{w|vancomycin-resistant Staphylococcus aureus}} (VRSA) and {{w|vancomycin-resistant Enterococcus}} (VRE), two of the most rapidly growing strains of multidrug-resistant bacteria.<ref name="Antibiotics armageddon?"/> || | | 1952 || Introduction || {{w|Streptogramin}}s are introduced. Streptogramins are effective in the treatment of {{w|vancomycin-resistant Staphylococcus aureus}} (VRSA) and {{w|vancomycin-resistant Enterococcus}} (VRE), two of the most rapidly growing strains of multidrug-resistant bacteria.<ref name="Antibiotics armageddon?"/> || |
Revision as of 14:09, 2 May 2018
This is a timeline of antibiotics, mainly focusing on both the introduction of drugs and first reported drug resistances. For historic events focusing on bacteria, visit Timeline of bacteriology.
Contents
Big picture
Time period | Development summary |
---|---|
<19th century | Although people did not know infections were caused by bacteria, antibiotics have been used for millennia to treat infections. Some of the earliest civilizations used various molds and plant extracts for treatment. The ancient Egyptians, for example, applied mouldy bread to infected wounds.[1] |
19th century | Scientists begin to observe antibacterial chemicals in action.[1] By the late century, a few notable breakthroughs occur. |
20th century | Antibiotics revolutionize medicine during the later half of the 20th century.[2] The major event in the history of antibiotics is the discovery of penicillin by Alexander Fleming in 1928. The first antibiotics are prescribed in the late 1930s.[3] The period between the 1950s and 1970s is considered the golden era of discovery of novel antibiotics classes, with no new classes discovered since then.[4] In fact, between 1944 and 1972 human life expectancy jumps by eight years, largely due to the introduction of antibiotics.[3] In the 1970s and 1980s synthetic versions of erythromycin, including clarithromycin and azithromycin, are developed.[5] After the 1970s, with the decline of the discovery rate, the mainstream approach for the development of new drugs to combat emerging and re-emerging resistance of pathogens to antibiotics would be the modification of existing antibiotics.[4] By the 1980s and 1990s, scientists only manage to make improvements within classes.[6] |
Full timeline
Year | Event type | Details | Geographical location | |
---|---|---|---|---|
350 CE–550 CE | Traces of tetracycline are found in human skeletal remains from ancient Sudanese Nubia.[4][2] | |||
1877 | Scientific development | French microbiologist Louis Pasteur shows that the bacterial disease anthrax can be rendered harmless in animals with the injection of soil bacteria.[7][8] | France | |
1887 | Scientific development | German bacteriologist Rudolf Emmerich shows that the intestinal infection cholera is prevented in animals that have been previously infected with the streptococcus bacterium and then injected with the cholera bacillus.[9] | ||
1888 | Isolation | German scientist E. de Freudenreich manages to isolate an actual product from a bacterium that had antibacterial properties.[10] | ||
1896 | Scientific development | French medical student Ernest Duchesne originally discovers the antibiotic properties of Penicillium.[11][12][13] | ||
1907 | Scientific development | German chemist Alfred Bertheim and Paul Ehrlich discover arsenic-derived synthetic antibiotics. This marks the beginning of the era of antibacterial treatment.[14] | ||
1909 | Introduction | Japanese bacteriologist Sahachiro Hata discovers the antisyphilitic activity of arsphenamine.[1][15] | ||
1912 | Introduction | Paul Ehrlich discovers Neosalvarsan, a synthetic chemotherapeutic.[16] | ||
1928 | Introduction | Scottish microbiologist Alexander Fleming, a Professor of Bacteriology at St Mary’s Hospital in London, discovers penicillin after sorting through some petri dishes containing a bacteria called staphylococcus, which causes boils, sore throats and abscesses. Flemming discovers killed baceria in one dish contaning a blob of mold on it.[10][5] | United Kingdom | |
1930 | Isolation | French-born American microbiologist René Dubos isolates from a soil microorganism an enzyme that can decompose part of the bacillum that causes lobar pneumonia in humans.[17] | ||
1932 | Introduction | German pathologist Gerhard Domagk develops prontosil, the first sulphonamide microbial.[18][19][20] | Germany | |
1936 | Introduction | Sulfonamide antibacterial sulfanilamide is introduced in the United States and is immediately established as a powerful antiinfective agent.[21] | United States | |
1937 | Introduction | The first effective antimicrobials (sulfonamides) are introduced.[22] | ||
1938 | Introduction | Sulfapyridine is introduced for clinical use for the treatment of pneumococcic pneumonia.[23][24] Today it is used to help control dermatitis herpetiformis (Duhring's disease), a skin problem.[25] | ||
1939 | Isolation | Microbiologist René Dubos manages to isolate an antibacterial substance and names it tyrothricin.[17] | ||
1939 | Introduction | Gramicidin A is discovered from the soil bacterium bacillus brevis, and becomes the first clinically useful topical antibiotic.[26][27][28] | ||
1939 | Scientific development | Australian pharmacologist Howard Florey and Ernst Boris Chain manage to elucidate the structure of penicillin G, the first penicillin used in therapy.[29][30][31] | ||
1939 | Introduction | Sulfonamide antibiotic sulfacetamide is first reported in the treatment of diseases of the eye.[32][33] Today it is used to treat bacterial eye infections, such as conjunctivitis.[34] | ||
1940 | Introduction | Sulfonamide antibiotic sulfamethizole is introduced and marketed as a single compound for the treatment of urinary tract infections.[35][36][37] | ||
1941 | Introduction | β-lactam antibiotics enter initial clinical trials. In time, they would become the most widely produced and used antibacterial drugs in the world.[38][39] β-lactam antibiotics now the most economically important of all the groups of antimicrobials.[40] | ||
1941 | Introduction | Penicillin is introduced for medical use.[41][20] Just before the introduction of penicillin, the mortality rate from Staphylococcus aureus infections that had reached the blood stream was reported to be 80%.[41] | ||
1942 | Introduction | Sulfadimidine is introduced for the treatment of bacterial infections.[42][43][44][45] | ||
1942 | Resistance | Penicillin resistant bacteria are first detected, about one year after the introduction of penicillin.[41] | ||
1942 | Isolation | Gramicidin S, the first peptide antibiotic, is isolated by Gauze and Brazhnikova.[46][47][48] | ||
1943 | Introduction | American biochemists Selman Waksman, Albert Schatz, and Elizabeth Bugie discover antibiotic streptomycin, the first aminoglycoside. It is the first antibiotic effective against tuberculosis.[5][49][50][51][20] | United States | |
1943 | Introduction | Sulfamerazine is synthesized by American chemists.[52] The drug is today used as an antibacterial agent.[53][54][55][56] | United States | |
1943 | Production | Penicillin is mass produced and used heavily to treat Allied troops fighting in Europe during World War II.[2] | ||
1943 | Introduction | Bacitracin is first isolated.[57][58] The drug is used to prevent minor skin infections caused by small cuts, scrapes, or burns.[59] | ||
1945 | Introduction | The cephalosporins are discovered from a fungus, Cephalosporium acremonium, in seawater samples near a sewage outfall in Sardinia.[20][60][61][62] | Italy | |
1947 | Isolation | Chloramphenicol is isolated from the soil organism Streptomyces venezuelae. Merketed in 1949, its use would quickly become widespread due to its broad spectrum of antimicrobial activity.[63][64][65][66] | ||
1947 | Isolation | American plant physiologist Benjamin Minge Duggar isolates chlortetracycline from a Missouri River mud sample. It is the first tetracycline introduced.[67][68][69][70] | United States | |
1947 | Isolation | The polymyxin family of antibiotics is discovered, with polymyxin B being the first isolated from bacterium paenibacillus polymyxa.[5][71][72] | ||
1947 | Introduction | Nitrofuran is introduced.[38] | ||
1949 | Isolation | Jewish-American biochemist Selman Waksman and Hubert A. Lechevalier first isolates neomycin, as aminoglycoside antibiotic found in many topical medications such as creams, ointments, and eyedrops.[73][74][75] | United States | |
1949 | Scientific development | British chemist Dorothy Hodgkin reveals the complete structure of molecular penicillin, using the X-ray crystallography.[22] | United Kingdom | |
1950 | Introduction | Oxytetracycline comes into commercial use.[58][76][77] Since then, this antibiotic would be used widely in human and veterinary medicine.[78] | ||
1950 | Resistance | Resistance against chloramphenicol is observed.[79] | ||
1952 | Introduction | Lincosamides are introduced.[38] | ||
1952 | Introduction | Antibiotic thiamphenicol is first synthesized.[80] | ||
1952 | Introduction | Eli Lilly and Company introduces erythromycin, an antibiotic useful for the treatment of a number of bacterial infections, including respiratory tract infections, skin infections, chlamydia infections, pelvic inflammatory disease, and syphilis.[81][82][83] Erythromycin is the first macrolide antibiotic.[84] | United States | |
1952 | Introduction | Streptogramins are introduced. Streptogramins are effective in the treatment of vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant Enterococcus (VRE), two of the most rapidly growing strains of multidrug-resistant bacteria.[38] | ||
1953 | Introduction | Oxford University scientists discover antibiotic cephalosporin C, from which cephalosporins later develop. Like penicillins, cephalosporins inhibit cell wall synthesis by preventing cross-linking of peptidoglycan.[85][5] | United Kingdom | |
1953 | Resistance | Macrolide resistance is observed.[38] | ||
1954 | Introduction | Benzathine penicillin is established as a method for the treatment of syphilis.[86] | ||
1955 | Introduction | Macrolide antibiotic spiramycin is first introduced into the French market.[87] | France | |
1956 | Isolation | Research team at the Lilly Biological Laboratories in Indiana first isolates vancomycin from bacterium streplomyces orienlalis. Vancomycin is used as a treatment for complicated skin infections, bloodstream infections, endocarditis, bone and joint infections, and meningitis caused by methicillin-resistant staphylococcus aureus.[20][88][89][90] | United States | |
1956 | Introduction | Glycopeptides are introduced.[38] | ||
1956 | Resistance | Resistance against erythromycin is observed.[79] | ||
1957 | Introduction | Kanamycin is discovered. It is used to treat severe bacterial infections and tuberculosis.[58] | ||
1957 | Introduction | Ansamycins are introduced. These bacterial secondary metabolites show antimicrobial activity against many Gram-positive and some Gram-negative bacteria.[38] | ||
1959 | Introduction | Colistin becomes available for treating infections caused by gram-negative bacteria.[5] | ||
1959 | Introduction | Nitroimidazoles are introduced. They are effective bactericidal agents against anaerobes and protozoa.[38] | ||
1960 | Introduction | In an attempt to defeat penicillin-resistant strains, scientists develop methicillin, a different antibiotic in the penicillin class.[2][79] | ||
1961 | Resistance | Methicillin resistance is first reported.[41][79][38] | ||
1961 | Introduction | Antibiotic ampicillin is introduced. Within a short time it would become the drug of choice for treatment of Hemophilus influenzae meningitis.[91][92][93][20] | ||
1961 | Resistance | Methicillin-resistant staphylococcus aureus is first reported in the United Kingdom, just a year after the antibiotic methicillin was introduced in the country.[5] | ||
1961 | Discovery | Spectinomycin is first reported. Today it is used for the treatment of gonorrhea infections.[94][58] | ||
1962 | Introduction | Quinolones are discovered accidentally, as a byproduct of some research on the antimalarial drug chloroquine.[5][38] | ||
1963 | Isolation | Weinstein and his colleagues from the Schering Corporation describe the first isolation of the gentamicin complex.[20][95][96][97] | United States | |
1963 | Introduction | Gentamicin is discovered. It is used to treat several types of bacterial infections.[58] | ||
1963 | Resistance | Gram-negative bacterium acinetobacter baumannii becomes an antibiotic resistant pathogen.[41] | ||
1965 | Introduction | Dicloxacillin is synthesized by Bayer.[98][99][100] | ||
1966 | Resistance | Nalidixic acid resistance is observed.[38] | ||
1966 | Introduction | Antibiotic doxycycline is introduced.[101][102][103][20] | ||
1966 | Resistance | Resistance against cephalotin is observed.[79] | ||
1967 | Introduction | Clindamycin is first produced. It is used for the treatment of a number of bacterial infections.[58] | ||
1968 | Introduction | Antibiotic rifampicin is introduced for clinical use.[104][105][106] | Italy | |
1968 | Resistance | Tetracycline resistance is observed.[38][38] | ||
1968 | Introduction | Trimethoprim is introduced. It is used mainly in the treatment of bladder infections.[38] | ||
1970 | Introduction | Non-toxic semi-synthetic acid-resistant isoxazolyl penicillin flucloxacillin is introduced into clinical practice.[100][107] | ||
1971 | Introduction | Aminoglycoside antibiotic Tobramycin is discovered. It is used to treat various types of bacterial infections, particularly Gram-negative infections.[58] | ||
1972 | Isolation | Extracellular broad spectrum beta-lactam antibiotic cephamycin C is first isolated.[108][58] | ||
1972 | Introduction | Antibiotic minocycline is discovered.[101][102][103] | ||
1973 | Introduction | Bactericidal antibiotic Carbenicillin is discovered. It belongs to the carboxypenicillin subgroup of the penicillins.[109] | ||
1974 | Introduction | Antibiotic trimethoprim/sulfamethoxazole is commercially released.[110][20] | ||
1974 | Introduction | Cotrimoxazole is introduced.[58] | ||
1976 | Introduction | Antibiotic amikacin is introduced.[20] | ||
1976 | Resistance | Tufts University researcher Stuart B. Levy becomes one of the first to identify antibiotic resistance due to their use in animals.[2] | ||
1976 | Introduction | Amikacin is introduced.[58] | ||
1978 | Introduction | Cefoxitin is introduced.[109][111] | ||
1979 | Introduction | Eli Lilly patents antibiotic cefaclor.[112][113][114] | United States | |
1981 | Resistance | AmpC beta-lactamase resistance is observed.[38] | ||
1983 | Resistance | Extended-spectrum-beta-lactamase resistance is observed.[38] | ||
1984 | Introduction | Antibiotic ampicillin/clavulanate is introduced.[20] | ||
1984 | Introduction | amoxicillin clavulanate is introduced.[58] | ||
1985 | Introduction | Researchers at Eli Lilly and Company discover antibiotic daptomycin.[115][116][117] | United States | |
1985 | Introduction | Carbapenems are introduced.[79] | ||
1986 | Resistance | Vancomycin-resistant enterococcus is reported.[79][38] | ||
1987 | Introduction | Antibiotic imipenem/cilastin is introduced.[20] | ||
1987 | Introduction | Highly potent fluoroquinolones are introduced.[22] | ||
1987 | Introduction | Antibiotic ciprofloxacin is introduced.[20][118][119] | ||
1987 | Resistance | Resistance against cephalosporins is observed.[79] | ||
1987 | Resistance | Resistance against carbapenems is observed.[79] | ||
1990s | Resistance | Fluorochinolone resistance is observed.[38] | ||
1993 | Introduction | Antibiotics azithromycin and clarithromycin are introduced.[20] | ||
1997 | Resistance | Vancomycin-resistant staphyloccocus is reported.[38] | ||
1997 | Ban | Avoparcin is banned in the European Union.[120] | European Union | |
1999 | Introduction | Antibiotic quinupristin/dalfopristin is introduced.[20] | ||
1999 | July | Ban | The European Union bans virginiamycin, bacitracin, spiramycin, and tylosin.[120] | European Union |
2000 | Introduction | Oxazolidinones are introduced.[38] | ||
2000 | Introduction | Antibiotic linezolid is introduced for the treatment of infections caused by gram-positive bacteria that are resistant to other antibiotics.[20][79] | ||
2001 | Introduction | Antibiotic telithromycin is introduced in the European Union.[121][122][123] | ||
2001 | Introduction | Broader-spectrum fluoroquinolones are introduced.[109] | ||
2002 | Resistance | Resistance against linezolid is observed.[79] | ||
2002 | Introduction | The United States Food and Drug Administration approves cefditoren, pivoxil and ertapenem. [124][58] | ||
2002 | Resistance | Vancomycin-resistant staphylococcus aureus is reported.[38] | ||
2003 | Introduction | Lipopeptides are introduced as antibiotics.[38] | ||
2003 | Introduction | Daptomycin is introduced for treatment of systemic and life-threatening infections caused by Gram-positive organisms.[20] | ||
2004 | Introduction | Telythromicin is introduced.[58] | ||
2005 | Introduction | Antibiotic tigecycline is introduced for the treatment of skin and skin structure infections and intraabdominal infections.[125][126][127] | ||
2010 | Publication | Authors of a report on the evolution of resistance note that microbes have “extraordinary genetic capabilities” that benefit “from man’s overuse of antibiotics to exploit every source of resistance genes... to develop [resistance] for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise.”[2] | ||
2011 | Introduction | The United States Food and Drug Administration approves fidaxomicin for treatment of clostridium Difficile Infection.[128][129] | United States | |
2012 | Study | A team of scientists propose adding the terms extensively drug-resistant (XDR) and pandrug-resistant (PDR) to multidrug-resistant (MDR) bacteria to better help them classify and potentially defeat superbugs.[2] | ||
2012 | Introduction | The United States Food and Drug Administration approves bedaquiline for the treatment of multidrug-resistant tuberculosis.[130][131] | United States | |
2013 | Introduction | The United States Food and Drug Administration approves telavancin for the treatment of hospital-acquired pneumonia caused by susceptible staphylococcus aureus.[132][133][134] | United States | |
2014 | Declaration | The World Health Organization (WHO) releases a statement in response to major superbug outbreaks like lebsiella pneumoniae (which causes pneumonia and bloodstream infections in the hospital) and gonorrhea strains all over the world, noting that “this serious threat is no longer a prediction for the future, it is happening right now in every region of the world and has the potential to affect anyone, of any age, in any country.”[2] | ||
2014 | Introduction | The United States Food and Drug Administration approves four new antibacterial agents, dalbavancin, oritavancin, tedizolid for skin infections, and ceftolozane/tazobactam for complicated intra‐abdominal and urinary tract infections.[135] | United States | |
2015 | Policy | American fast food company McDonald's announces that it would phase out all meat sources that contain antibiotics.[2] | ||
2015 | Introduction | Ceftazidime/avibactam is introduced for use in the United States.[136][137][138] | United States | |
2018 | Introduction | The discovery of malacidins is published.[139] |
Meta information on the timeline
How the timeline was built
The initial version of the timeline was written by User:Sebastian.
Funding information for this timeline is available.
Feedback and comments
Feedback for the timeline can be provided at the following places:
- FIXME
What the timeline is still missing
Timeline update strategy
See also
External links
References
- ↑ 1.0 1.1 1.2 "THE HISTORY OF ANTIBIOTICS". microbiologysociety.org. Retrieved 29 March 2018.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 "A Brief History Of Antibiotic Resistance: How A Medical Miracle Turned Into The Biggest Public Health Danger Of Our Time". medicaldaily.com. Retrieved 29 March 2018.
- ↑ 3.0 3.1 "antibiotics 1928-2000". abc.net.au. Retrieved 31 March 2018.
- ↑ 4.0 4.1 4.2 Aminov, Rustam I. "A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future". PMC 3109405. PMID 21687759. doi:10.3389/fmicb.2010.00134.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 "Ten important moments in the history of antibiotic discovery". correctiv.org. Retrieved 29 March 2018.
- ↑ "A brief history of antibiotics". news.bbc.co.uk. Retrieved 30 March 2018.
- ↑ Tierno, Philip M. The Secret Life of Germs: What They Are, Why We Need Them, and How We Can Protect Ourselves Against Them.
- ↑ Williams, Elizabeth S.; Barker, Ian K. Infectious Diseases of Wild Mammals.
- ↑ Newell-McGloughlin, Martina; Re, Edward. The Evolution of Biotechnology: From Natufians to Nanotechnology.
- ↑ 10.0 10.1 Newell-McGloughlin, Martina; Re, Edward. The Evolution of Biotechnology: From Natufians to Nanotechnology.
- ↑ Zhang, Yawei. Encyclopedia of Global Health, Volume 1.
- ↑ Myers, Richard L. The 100 Most Important Chemical Compounds: A Reference Guide.
- ↑ Manning, Shannon D.; Alcamo, I. Edward; Heymann, David L. Escherichia Coli Infections.
- ↑ SWATHY, S; ARYA, US. "ANTIBIOTIC USAGE IN PEDIATRICS" (PDF). INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD.
- ↑ Thomas, Gareth. Medicinal Chemistry: An Introduction.
- ↑ "Neosalvarsan". sciencedirect.com. Retrieved 1 April 2018.
- ↑ 17.0 17.1 "René Dubos". britannica.com. Retrieved 30 March 2018.
- ↑ Ravina, Enrique. The Evolution of Drug Discovery: From Traditional Medicines to Modern Drugs.
- ↑ Savona-Ventura, Charles. Contemporary Medicine in Malta [1798-1979].
- ↑ 20.00 20.01 20.02 20.03 20.04 20.05 20.06 20.07 20.08 20.09 20.10 20.11 20.12 20.13 20.14 20.15 20.16 Torok, Estee; Moran, Ed; Cooke, Fiona. Oxford Handbook of Infectious Diseases and Microbiology.
- ↑ HUGHES, RAYMOND P. "THE USE OF SULFANILAMIDE IN DERMATOLOGY". doi:10.1001/archderm.1940.01490130037006.
- ↑ 22.0 22.1 22.2 Davies, Julian; Davies, Dorothy. "Origins and Evolution of Antibiotic Resistance" (PDF). doi:10.1128/MMBR.00016-10.
- ↑ "Clinical Pharmacokinetics of Sulfonamides and Their Metabolites". karger.com. Retrieved 1 April 2018.
- ↑ DETWEILER, H. K.; KINSEY, H. I.; HURST, W. "TREATMENT OF PNEUMONIA WITH SULFAPYRIDINE".
- ↑ "Sulfapyridine (Oral Route)". mayoclinic.org. Retrieved 2 May 2018.
- ↑ Bhattacharjee, Mrinal K. Chemistry of Antibiotics and Related Drugs.
- ↑ Mouritsen, Ole G. Life - As a Matter of Fat: The Emerging Science of Lipidomics.
- ↑ Current Topics in Membranes and Transport, Volume 33.
- ↑ Stadler, Marc; Dersch, Petra. How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives.
- ↑ Persson, Sheryl. Smallpox, Syphilis and Salvation: Medical Breakthroughs that Changed the World.
- ↑ Smallman-Raynor,, Matthew; Cliff, Andrew. Atlas of Epidemic Britain: A Twentieth Century Picture.
- ↑ DUEMLING, WERNER W. "SODIUM SULFACETAMIDE IN TOPICAL THERAPY".
- ↑ DUEMLING, WERNER W. "SODIUM SULFACETAMIDE IN TOPICAL THERAPY". doi:10.1001/archderm.1954.01540130077007.
- ↑ "Sulfacetamide Sodium Drops". webmd.com. Retrieved 2 May 2018.
- ↑ Vree, T.B. "Clinical Pharmacokinetics of Sulfonamides and Their Metabolites". doi:10.1159/000414195.
- ↑ Vree, Tom B.; Aaron, Yechiel; Karger, Hekster S. Antibiotics and Chemotherapy, Volume 37.
- ↑ The New Yorker, Volume 45, Part 2.
- ↑ 38.00 38.01 38.02 38.03 38.04 38.05 38.06 38.07 38.08 38.09 38.10 38.11 38.12 38.13 38.14 38.15 38.16 38.17 38.18 38.19 38.20 38.21 "Antibiotics armageddon?". mega.online. Retrieved 31 March 2018.
- ↑ "Beta lactam antibiotics". slideshare.net. Retrieved 2 May 2018.
- ↑ "β-Lactam Antibiotics". sciencenutshell.com. Retrieved 2 May 2018.
- ↑ 41.0 41.1 41.2 41.3 41.4 Landecker, Hannah. "Antibiotic Resistance and the Biology of History".
- ↑ [Consolidated list of products whose consumption and/or sale have been banned, withdrawn, severely restricted or not approved by governments / Pharmaceuticals ] ; Consolidated list of products whose consumption and/or sale have been banned, withdrawn, severely restricted or not approved by governments. Pharmaceuticals. United Nations.
- ↑ "Clinical Pharmacokinetics of Sulfonamides and Their Metabolites". karger.com. Retrieved 1 April 2018.
- ↑ [Consolidated list of products whose consumption and/or sale have been banned, withdrawn, severely restricted or not approved by governments / Pharmaceuticals ] ; Consolidated list of products whose consumption and/or sale have been banned, withdrawn, severely restricted or not approved by governments. Pharmaceuticals. United Nations.
- ↑ Vree, Tom B.; Hekster, Yechiel Aaron. Antibiotics and Chemotherapy, Volume 37.
- ↑ Berditsch, Marina; Afonin, Sergii; Ulrich, Anne S. "The Ability of Aneurinibacillus migulanus (Bacillus brevis) To Produce the Antibiotic Gramicidin S Is Correlated with Phenotype Variation▿".
- ↑ GAUSE, G. F.; BRAZHNIKOVA, M. G. "Gramicidin S and its use in the Treatment of Infected Wounds". Nature. doi:10.1038/154703a0.
- ↑ Korzybski, Tadeusz; Kowszyk-Gindifer, Zuzanna; Kurylowicz, Wlodzimierz. Antibiotics: Origin, Nature and Properties.
- ↑ Lorian, Victor. Antibiotics in Laboratory Medicine.
- ↑ Morabia, Alfredo. Enigmas of Health and Disease: How Epidemiology Helps Unravel Scientific Mysteries.
- ↑ Cumo, Christopher Martin. The Ongoing Columbian Exchange: Stories of Biological and Economic Transfer in World History: Stories of Biological and Economic Transfer in World History.
- ↑ Boothe, Russell G. "Comparison of sulfathiazole with sulfamerazine in extraction and impaction".
- ↑ "Sulfamerazine". pubchem.ncbi.nlm.nih.gov. Retrieved 2 May 2018.
- ↑ Santo Tomas Journal of Medicine, Volume 3. University of Santo Tomas, College of Medicine.
- ↑ Biennial Report. North Dakota. State Dept. of Health.
- ↑ Nelson loose-leaf living medicine, Volume 8. T. Nelson & Sons.
- ↑ "Bacitracin A". pubchem.ncbi.nlm.nih.gov. Retrieved 2 May 2018.
- ↑ 58.00 58.01 58.02 58.03 58.04 58.05 58.06 58.07 58.08 58.09 58.10 58.11 58.12 "The Golden Age of Antibacterials". amrls.cvm.msu.edu. Retrieved 31 March 2018.
- ↑ "Bacitracin Ointment". webmd.com. Retrieved 2 May 2018.
- ↑ Stephanie Watts; Faingold, Carl; Dunaway, George; Crespo, Lynn. Brody's Human Pharmacology - E-Book.
- ↑ Riviere, Jim E.; Papich, Mark G. Veterinary Pharmacology and Therapeutics.
- ↑ Bennett, Peter N.; Brown, Morris J. Clinical Pharmacology E-Book: With STUDENTCONSULT Access.
- ↑ Kacew, Sam. Drug Toxicity and Metabolism in Pediatrics.
- ↑ Riviere, Jim E.; Papich, Mark G. Veterinary Pharmacology and Therapeutics.
- ↑ Shapiro, Stuart. Regulation of Secondary Metabolism in Actinomycetes.
- ↑ Aschenbrenner, Diane S.; Venable, Samantha J. Drug Therapy in Nursing.
- ↑ Dougherty, Thomas J.; Pucci, Michael J. Antibiotic Discovery and Development.
- ↑ Kokate, Chandrakant; Jalalpure, SS; Pramod, H.J. Textbook of Pharmaceutical Biotechnology - E-Book.
- ↑ Advances in Pharmacology and Chemotherapy.
- ↑ McKenna, John. Natural Alternatives to Antibiotics – Revised and Updated: How to treat infections without antibiotics.
- ↑ Antimicrobial Cationic Peptides—Advances in Research and Application: 2013 Edition: ScholarlyBrief.
- ↑ Annual Reports in Medicinal Chemistry, Volume 46. Academic Press, Oct 12, 2011 - Science.
- ↑ Schindel, Leo. Unexpected Reactions to Modern Therapeutics: Antibiotics.
- ↑ Grayson, M Lindsay; Crowe, Suzanne M; McCarthy, James S; Mills, John; Mouton, Johan W; Norrby, S Ragnar; Paterson, David L; Pfaller, Michael A. Kucers' The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs.
- ↑ Advances in Carbohydrate Chemistry, Volume 18.
- ↑ "CHEBI:27701 - oxytetracycline". ebi.ac.uk. Retrieved 2 April 2018.
- ↑ Shwachman, Harry; Schuster, Augusto. "The Tetracyclines: Applied Pharmacology".
- ↑ BRUNO, D. W. "An investigation into oxytetracycline residues in Atlantic salmon, Salmo salar L.".
- ↑ 79.00 79.01 79.02 79.03 79.04 79.05 79.06 79.07 79.08 79.09 79.10 Stearns, Stephen C.; Koella, Jacob C. Evolution in Health and Disease. Evolution in Health and Disease.
- ↑ Wright, Peter M.; Seiple, Ian B.; Myers, Andrew G. "The Evolving Role of Chemical Synthesis in Antibacterial Drug Discovery". PMC 4536949. PMID 24990531. doi:10.1002/anie.201310843.
- ↑ Rubin, Bruce K.; Tamaoki, Jun. Antibiotics as Anti-Inflammatory and Immunomodulatory Agents.
- ↑ Piscitelli, Stephen C.; Rodvold, Keith A.; Pai, Manjunath P. Drug Interactions in Infectious Diseases.
- ↑ Nightingale; Mur. Antimicrobial Pharmacodynamics in Theory and Clinical Practice, Second Edition.
- ↑ Roberts, Marilyn C.; Sutcliffe, Joyce; Courvalin, Patrice; Jensen, Lars Bogo; Rood, Julian; Seppala, Helena. "Nomenclature for Macrolide and Macrolide-Lincosamide-Streptogramin B Resistance Determinants".
- ↑ "Cephalosporin C". sciencedirect.com. Retrieved 2 May 2018.
- ↑ Ellis, Albert; Abarbanel, Albert. The Encyclopædia of Sexual Behaviour, Volume 2.
- ↑ Lancini, Giancarlo; Parenti, Francesco. Antibiotics: An Integrated View.
- ↑ Staphylococci in Human Disease (Kent B. Crossley, Kimberly K. Jefferson, Gordon L. Archer, Vance G. Fowler ed.).
- ↑ Antibiotics Annual.
- ↑ Hejzlar, Miroslav. Advances in Antimicrobial and Antineoplastic Chemotherapy: Progress in Research and Clinical Application: pt. 1-2. Antimicrobial chemotherapy.
- ↑ Atta-ur-Rahman. Studies in Natural Products Chemistry, Volume 56.
- ↑ Thompson, R.A.; Green, John R. Infectious Diseases of the Central Nervous System.
- ↑ Fifty Years of Antimicrobials: Past Perspectives and Future Trends. Society for General Microbiology. Symposium.
- ↑ Bhattacharjee, Mrinal K. Chemistry of Antibiotics and Related Drugs.
- ↑ Advances in Applied Microbiology, Volume 18.
- ↑ Eardley, Ian; Whelan, Peter; Kirby, Roger; Schaeffer, Anthony. Drug Treatment in Urology.
- ↑ Antimicrobials: Synthetic and Natural Compounds (Dharumadurai Dhanasekaran, Nooruddin Thajuddin, A. Panneerselvam ed.).
- ↑ McGuire, John L. Pharmaceuticals, 4 Volume Set.
- ↑ Kuemmerle, Helmut Paul. Clinical Chemotherapy: Antimicrobial Chemotherapy.
- ↑ 100.0 100.1 Harper, N. J.; Simmonds, Alma B. Advances in Drug Research, Volume 7.
- ↑ 101.0 101.1 Yaffe, Sumner J.; Aranda, Jacob V. Neonatal and Pediatric Pharmacology: Therapeutic Principles in Practice.
- ↑ 102.0 102.1 Denyer, Stephen P.; Hodges, Norman A.; Gorman, Sean P.; Gilmore, Brendan F. Hugo and Russell's Pharmaceutical Microbiology.
- ↑ 103.0 103.1 Dirnagl, Ulrich; Elger, Bernd. Neuroinflammation in Stroke.
- ↑ Rahman, Atta -ur-; Choudhary, M. Iqbal. Frontiers in Anti-Infective Drug Discovery, Volume 6.
- ↑ Kucers' The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Edition - Three Volume Set (y M. Lindsay Grayson, Sara E. Cosgrove, Suzanne Crowe, William Hope, James S. McCarthy, John Mills, Johan W. Mouton, David L. Paterson ed.).
- ↑ Mann, R.D. Modern Drug use: An Enquiry on Historical Principles.
- ↑ Neonatal Formulary. BMJ Books, 2000.
- ↑ Diana, Patrizia; Cirrincione, Girolamo. Biosynthesis of Heterocycles: From Isolation to Gene Cluster.
- ↑ 109.0 109.1 109.2 "ANTIBIOTIC-TIMELINE". amrls.cvm.msu.edu. Retrieved 1 April 2018.
- ↑ "Pharmaceutical Marketing in India". books.google.com.ar. Retrieved 28 March 2018.
- ↑ Sandford Goodman,, Louis; Goodman Gilman, Alfred. Goodman and Gilman's: The Pharmacological Basis of Therapeutics.
- ↑ Sinha, Aseema. Globalizing India.
- ↑ Amann, Edmund; Cantwell, John. Innovative Firms in Emerging Market Countries.
- ↑ Meléndez-Ortiz,, Ricardo; Roffe, Pedro. Intellectual Property and Sustainable Development: Development Agendas in a Changing World.
- ↑ Current Medical Research and Opinion, Volume 22, Issues 9-12. Clayton-Wray Publications Limited, 2006.
- ↑ Rybak, M. J. "The efficacy and safety of daptomycin: first in a new class of antibiotics for Gram‐positive bacteria".
- ↑ Beiras-Fernandez, Andres; Ferdinand Vogt, Ferdinand Vogt; Sodian, Ralf; Weis, Florian. "Daptomycin: a novel lipopeptide antibiotic against Gram-positive pathogens". PMC 3108743. PMID 21694898. doi:10.2147/IDR.S6961.
- ↑ Andriole, Vincent T. The Quinolones.
- ↑ Aronson, Jeffrey K. Meyler's Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions.
- ↑ 120.0 120.1 Acar, J.; Casewell, M.; Freeman, J.; Friis, C.; Goossens, H. "Avoparcin and virginiamycin as animal growth promoters: a plea for science in decision‐making".
- ↑ Kucers' The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Edition - Three Volume Set (M. Lindsay Grayson, Sara E. Cosgrove, Suzanne Crowe, William Hope, James S. McCarthy, John Mills, Johan W. Mouton, David L. Paterson ed.).
- ↑ Alex, Alexander; Harris, C. John; Smith, Dennis A. Attrition in the Pharmaceutical Industry: Reasons, Implications, and Pathways Forward.
- ↑ Hugo and Russell's Pharmaceutical Microbiology (Stephen P. Denyer, Norman A. Hodges, Sean P. Gorman, Brendan F. Gilmore ed.).
- ↑ Zinner, SH. "The search for new antimicrobials: why we need new options.". PMID 16307503. doi:10.1586/14787210.3.6.907.
- ↑ Low-dose antibiotics: current status and outlook for the future (Robert Paul Hunter, Carlos F Amábile-Cuevas, Jun Lin, Joshua D Nosanchuk, Rustam Aminov ed.).
- ↑ Vincent, Jean-Louis; Abraham, Edward; Kochanek, Patrick; Moore, Frederick A.; Fink, Mitchell P. Textbook of Critical Care E-Book.
- ↑ Trauma: Critical Care (William C. Wilson, Christopher M. Grande, David B. Hoyt ed.).
- ↑ Richards, Jeremy B.; Stapleton, Renee D. Non-Pulmonary Complications of Critical Care: A Clinical Guide.
- ↑ Bope, Edward T.; Kellerman, Rick D. Conn's Current Therapy 2017 E-Book.
- ↑ Kurreck,, Jens; Stein, Aaron. Molecular Medicine: An Introduction.
- ↑ Villa,, Tomas G.; Vinas, Miguel. New Weapons to Control Bacterial Growth.
- ↑ Mandell, Gerald L. Principles and Practice of Infectious Diseases.
- ↑ Bennett, John E.; Dolin, Raphael; Blaser, Martin J. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases E-Book.
- ↑ Villa, Tomas G.; Vinas, Miguel. New Weapons to Control Bacterial Growth.
- ↑ Alex, Alexander; Harris, C. John; Smith, Dennis A. Attrition in the Pharmaceutical Industry: Reasons, Implications, and Pathways Forward.
- ↑ Stanbury, Peter F; Whitaker, Allan; Hall, Stephen J. Principles of Fermentation Technology.
- ↑ Wanger, Audrey; Chavez, Violeta; Huang, Richard; Wahed, Amer; Dasgupta, Amitava; Actor, Jeffrey K. Microbiology and Molecular Diagnosis in Pathology: A Comprehensive Review for Board Preparation, Certification and Clinical Practice.
- ↑ Chandrasekar, Pranatharthi H. Infections in the Immunosuppressed Patient: An Illustrated Case-Based Approach.
- ↑ "A new antibiotic Malacidin from soil kills resistant bacteria". news-medical.net. Retrieved 2 April 2018.