Difference between revisions of "Timeline of transformers"
From Timelines
Line 43: | Line 43: | ||
|- | |- | ||
| 2020 || June 11 || || OpenAI releases Generative Pre-trained Transformer 3 ({{w|GPT-3}}) in beta. | | 2020 || June 11 || || OpenAI releases Generative Pre-trained Transformer 3 ({{w|GPT-3}}) in beta. | ||
+ | |- | ||
+ | | 2021 || October || Transformer launch || NVIDIA and Microsoft jointly introduce Megatron-Turing NLG 530B, also known as MT-NLG, which is the successor to Microsoft Turing NLG 17B and NVIDIA Megatron-LM 8.3B. The MT-NLG model is three times larger than GPT-3, with 530 billion parameters, and is trained on over 4,000 GPUs. The dataset sources used to train the MT-NLG model include The Pile v1 plus an additional 14 datasets, such as Books3, OpenWebText2, Stack Exchange, PubMed Abstracts, and GitHub, among others. The total size of the dataset is estimated to be over 825GB, with a potential size of 1.86TB (1,863GB). The MT-NLG model represents a significant advancement in natural language generation and has the potential to be used in a wide range of applications.<ref name="lifearchitect.ai">{{cite web |title=AI: Megatron the Transformer, and its related language models |url=https://lifearchitect.ai/megatron/#fairseq |website=lifearchitect.ai |access-date=12 March 2023 |language=en-AU |date=24 September 2021}}</ref> | ||
|- | |- | ||
| 2022 || June 14 || || Google releases all Switch Transformer models in T5X/JAX, including the 1.6T param Switch-C and the 395B param Switch-XXL models.<ref>{{cite web |title=https://twitter.com/LiamFedus/status/1536791574612303872 |url=https://twitter.com/LiamFedus/status/1536791574612303872 |website=Twitter |access-date=8 March 2023 |language=en}}</ref> The Switch Transformer is a type of neural network layer used in the transformer architecture, which replaces the regular feed-forward neural network (FFN) layer. The Switch Transformer is unique because it has multiple FFNs, also known as experts, in each layer, as opposed to the single FFN found in a standard transformer layer.<ref>{{cite web |last1=Davis |first1=Jonathan |title=Understanding Google’s Switch Transformer |url=https://towardsdatascience.com/understanding-googles-switch-transformer-904b8bf29f66?gi=dce2bdefb21d#:~:text=The%20Switch%20Transformer%20is%20a,multiple%20FFNs%2C%20known%20as%20experts. |website=Medium |access-date=8 March 2023 |language=en |date=2 May 2021}}</ref> | | 2022 || June 14 || || Google releases all Switch Transformer models in T5X/JAX, including the 1.6T param Switch-C and the 395B param Switch-XXL models.<ref>{{cite web |title=https://twitter.com/LiamFedus/status/1536791574612303872 |url=https://twitter.com/LiamFedus/status/1536791574612303872 |website=Twitter |access-date=8 March 2023 |language=en}}</ref> The Switch Transformer is a type of neural network layer used in the transformer architecture, which replaces the regular feed-forward neural network (FFN) layer. The Switch Transformer is unique because it has multiple FFNs, also known as experts, in each layer, as opposed to the single FFN found in a standard transformer layer.<ref>{{cite web |last1=Davis |first1=Jonathan |title=Understanding Google’s Switch Transformer |url=https://towardsdatascience.com/understanding-googles-switch-transformer-904b8bf29f66?gi=dce2bdefb21d#:~:text=The%20Switch%20Transformer%20is%20a,multiple%20FFNs%2C%20known%20as%20experts. |website=Medium |access-date=8 March 2023 |language=en |date=2 May 2021}}</ref> |
Revision as of 18:28, 12 March 2023
This is a timeline of FIXME.
Contents
Sample questions
The following are some interesting questions that can be answered by reading this timeline:
Big picture
Time period | Development summary | More details |
---|
Full timeline
Year | Month and date | Event type | Details |
---|---|---|---|
2017 | June | Google researchers first describe the transformer algorithm that would turbocharge the power of chatbots. | |
2018 | June 11 | OpenAI releases a paper entitled Improving Language Understanding by Generative Pre-Training, in which they introduces the Generative Pre-trained Transformer (GPT).[1] | |
2019 | February 14 | OpenAI releases Generative Pre-trained Transformer 2 (GPT-2). | |
2019 | August | NVIDIA introduces Megatron-LM, a transformer language model with 8.3 billion parameters, 8-way model parallelism, and 64-way data parallelism trained on 512 GPUs. It is the largest transformer model trained to date and is 24x the size of BERT and 5.6x the size of GPT-2. NVIDIA used a 37 GB WebText dataset downloaded from Reddit for training and split it into a 95:5 ratio (training and validation sets). Megatron-LM surpassed previous state-of-the-art results in wikitext perplexity and Lambada accuracy. NVIDIA solved the problem of training massive transformer models by using model parallelism that splits the parameters across multiple GPUs without requiring new compiler or code re-wiring.[2] | |
2020 | June 11 | OpenAI releases Generative Pre-trained Transformer 3 (GPT-3) in beta. | |
2021 | October | Transformer launch | NVIDIA and Microsoft jointly introduce Megatron-Turing NLG 530B, also known as MT-NLG, which is the successor to Microsoft Turing NLG 17B and NVIDIA Megatron-LM 8.3B. The MT-NLG model is three times larger than GPT-3, with 530 billion parameters, and is trained on over 4,000 GPUs. The dataset sources used to train the MT-NLG model include The Pile v1 plus an additional 14 datasets, such as Books3, OpenWebText2, Stack Exchange, PubMed Abstracts, and GitHub, among others. The total size of the dataset is estimated to be over 825GB, with a potential size of 1.86TB (1,863GB). The MT-NLG model represents a significant advancement in natural language generation and has the potential to be used in a wide range of applications.[3] |
2022 | June 14 | Google releases all Switch Transformer models in T5X/JAX, including the 1.6T param Switch-C and the 395B param Switch-XXL models.[4] The Switch Transformer is a type of neural network layer used in the transformer architecture, which replaces the regular feed-forward neural network (FFN) layer. The Switch Transformer is unique because it has multiple FFNs, also known as experts, in each layer, as opposed to the single FFN found in a standard transformer layer.[5] | |
2023 | February 15 | A paper presents a pilot study that evaluates the cognitive abilities of two recently released generative transformer models, ChatGPT and DALL-E 2, in decision-making and spatial reasoning. The study constructs input prompts following neutral a priori guidelines and finds that DALL-E 2 can generate at least one correct image for each spatial reasoning prompt, but most images generated are incorrect. Similarly, ChatGPT demonstrates some level of rational decision-making, but many of its decisions violate at least one of the axioms under the classical Von Neumann-Morgenstern utility theorem. ChatGPT's outputs tend to be unpredictable and can make irrational decisions for simpler problems while drawing correct conclusions for more complex bet structures. The paper discusses the challenges of scaling up such cognitive evaluations for generative models and conducting them with a closed set of answer keys.[6] | |
2023 | February 18 | A paper evaluates the performance of Generative Pre-trained Transformer (GPT) models for machine translation, covering various aspects such as the quality of different GPT models, the effect of prompting strategies, robustness towards domain shifts and document-level translation. The experiment includes eighteen different translation directions involving high and low resource languages, as well as non English-centric translations. The results show that GPT models achieve competitive translation quality for high resource languages, while having limited capabilities for low resource languages. Hybrid approaches, which combine GPT models with other translation systems, can further enhance the translation quality. The paper provides valuable insights for researchers and practitioners in the field to understand the potential and limitations of GPT models for translation.[7] |
Meta information on the timeline
How the timeline was built
The initial version of the timeline was written by FIXME.
Funding information for this timeline is available.
Feedback and comments
Feedback for the timeline can be provided at the following places:
- FIXME
What the timeline is still missing
Timeline update strategy
See also
External links
References
- ↑ Radford, Alec; Narasimhan, Karthik; Salimans, Tim; Sutskever, Ilya (11 June 2018). "Improving Language Understanding by Generative Pre-Training" (PDF). OpenAI. p. 12. Archived from the original (PDF) on 26 January 2021. Retrieved 23 January 2021.
- ↑ "Megatron Unleashed: NVIDIA's NLP Model "Megatron-LM" is the Largest Transformer Ever Trained | Exxact Blog". www.exxactcorp.com. Retrieved 11 March 2023.
- ↑ "AI: Megatron the Transformer, and its related language models". lifearchitect.ai. 24 September 2021. Retrieved 12 March 2023.
- ↑ "https://twitter.com/LiamFedus/status/1536791574612303872". Twitter. Retrieved 8 March 2023. External link in
|title=
(help) - ↑ Davis, Jonathan (2 May 2021). "Understanding Google's Switch Transformer". Medium. Retrieved 8 March 2023.
- ↑ Tang, Zhisheng; Kejriwal, Mayank (15 February 2023). "A Pilot Evaluation of ChatGPT and DALL-E 2 on Decision Making and Spatial Reasoning". arXiv:2302.09068 [cs]. doi:10.48550/arXiv.2302.09068. Retrieved 7 March 2023.
- ↑ Hendy, Amr; Abdelrehim, Mohamed; Sharaf, Amr; Raunak, Vikas; Gabr, Mohamed; Matsushita, Hitokazu; Kim, Young Jin; Afify, Mohamed; Awadalla, Hany Hassan (17 February 2023). "How Good Are GPT Models at Machine Translation? A Comprehensive Evaluation". arXiv:2302.09210 [cs]. doi:10.48550/arXiv.2302.09210.