Difference between revisions of "Timeline of diphtheria"
From Timelines
(→See also) |
|||
Line 106: | Line 106: | ||
==See also== | ==See also== | ||
+ | |||
+ | * [[Timeline of global health]] | ||
== References == | == References == |
Revision as of 06:54, 11 May 2017
This is a timeline of diphtheria, describing major events such as epidemics and medical developments.
Big picture
Year/period | Key developments |
---|---|
1600s onward | Diphtheria infection grows significantly since the 17th century and becomes one of the major causes of death, fuelled by the industrial revolution and increasingly crowded urban centers.[1] |
1800s | Major scientific breakthroughs consolidate the knowledge on diphtheria, which is given its actual name in this century[1]. Bacterium corynebacterium diphtheriae and the diphtheria toxin are discovered.[2][3] Also, the first effective therapeutic serum against diphtheria is developed.[4] |
1923 onward | After the first diphtheria toxoid vaccine is developed, its subsequent widespread use would lead to a dramatic decrease of diphtheria rates worldwide.[5][6] A more than 90% decrease in number of cases globally results later, between 1980 and 2000.[7] |
Recent years | Currently most diphtheria cases occur in Sub-Sharan Africa, India, and Indonesia. Globally 4,700 cases were officially reported in 2013, down from nearly 100,000 in 1980.[7] |
Visual data
Timeline
Year/period | Type of event | Event | Present time geographical location |
---|---|---|---|
5th century BC | Scientific development | Diphtheria is first described by Greek physician Hippocrates.[8][9] | Greece |
1600s | Scientific development | Medical reports of a "deadly" strangulation disease first appear early in the century, and emerges as a greater threat with the growth of urbanizations.[1][9] | |
1613 | Epidemic | Diphtheria epidemic in Spain causes the year to be named "El año de los Garotillos" ("year of strangulations"), due to the many deaths caused by diphtheria suffocation.[10] | Spain |
1771 | Medical development | American physician Samuel Bard publishes An Enquiry into the Nature, Cause and Cure, of the Angina Suffocativa, or, Sore Throat Distemper, one of the earliest accurate descriptions of diphtheria as well as one of the first original contributions to pediatrics made by an American.[11] | United States |
1826 | Scientific development | French physician Pierre Bretonneau gives diphtheria its official name diphtérite, derived from the Greek word for "leather" or "hide", which describes the pseudomembrane in the throat of the victims.[1][12][10] | |
1856 | Epidemic | San Francisco doctor Victor Fourgeaud describes an epidemic of diphtheria in California.[7] | United States |
1883 | Scientific development | Swiss pathologist Edwin Klebs first observes the bacterium corynebacterium diphtheriae in diphtheritic membranes.[9][10] | |
1884 | Scientific development | German bacteriologist Friedrich Loeffler first grows corynebacterium diphtheriae in pure culture.[2][5][9][10] | Germany |
1888 | Scientific development | French physicians Pierre Paul Émile Roux and Alexandre Yersin, working at Pasteur Institute, discover the diphtheria toxin.[3][10] | France |
1890 | Medical development | German physiologist Emil von Behring develops the first effective therapeutic serum against diphtheria. In 1901 Von Bering would be awarded the first Nobel Prize in Physiology or Medicine for this work.[4][13] | Germany |
1891 | Medical development | The first successful therapeutic serum treatment of a child suffering from diphtheria is performed.[4] | |
1894 | Medical development | The production and marketing of the diphtheria therapeutic serum begins in Germany.[4] | Germany |
1894 | Medical development | American pharmaceutical H. K. Mulford Company of Philadelphia starts production and testing of diphtheria antitoxin in the United States.[14] | United States |
1901 | Medical development | Emil von Behring, for the first time, uses a diphtheria innoculation of bacteria with reduced virulence, hoping with this active immunization to help the body also produce antitoxins.[4] | Germany |
1905 | Medical development | Franklin Royer publishes a paper urging timely treatment for diphtheria and adequate doses of antitoxin.[7] | |
1913 | Medical development | Emil von Behring publishes his diphtheria protective agent, T.A. (Toxin-Antitoxin), which contains a mixture of diphtheria toxin and therapeutic serum antitoxin. Designed to provide long-term protection, the new drug would further be tested at various clinics and proven to be non-harmful and effective.[4] | Germany |
1921 | Report | A high of 206,000 cases of diphtheria and 15,520 deaths (case-fatality ratio of 7.5%) are recorded in the United States.[15][16] | United States |
1923 | Scientific development | French biologist Gaston Ramon, working at Pasteur Institute, develops diphtheria toxoid that could later be used for a toxoid vaccination. The product is licensed; prepared from inactivated bacterial toxin that has lost its toxicity but retaining its antitoxin producing properties. This would be considered the first diphtheria vaccine.[17][7][13] | France |
1924 | Scientific development | Gaston Ramon discovers diphtheria and tetanus toxoid, then referred to as anatoxins.[18] | France |
1926 | Medical development | British immunologist Alexander Glenny, working at Wellcome Research Laboratories, develops the adjuvant (the substance that enhances the body's immune response to an antigen) for the toxoid vaccine by increasing the effectiveness of diphtheria toxoid when treating it with aluminum salts.[7][17] | United Kingdom (London) |
1947 | Medical development | Combination diphtheria and tetanus toxoids for pediatric use is first licensed in the United States.[13] | United States |
1949 | Medical development | American Microbiologist, Stephen Dyonis Elek develops the immuno diffusion technique, also called Elek's test. It is used to test for toxigenicity of corynebacterium diphtheriae.[19] | United States |
1953 | Medical development | Tetanus and diphtheria toxoids (adult formulation) are first licensed in the United States, after the concentration of diphtheria toxoid is reduced.[13] | United States |
1964 | Policy | World Health Organization recommendations for the production and quality control of diphtheria vaccines are first formulated.[20] | |
1971 | Epidemic | Seattle experiences the last major diphtheria outbreak in the United States.[21] | United States |
1974 | Program launch | Diphtheria toxoid combined with tetanus and pertussis vaccines (DTP) is included in the newly incepted World Health Organization Expanded Programme on Immunization.[20] | |
1974 | Epidemic | Diphtheria epidemic breaks out in Lisbon. 500 persons are involved, and about 40 deaths are recorded.[2] | Portugal |
1982 | Epidemic | 5 deaths are recorded in Germany during a diphtheria outbreak.[2] | Germany |
1990-1998 | Epidemic | Massive diphtheria epidemic breaks out in the ex-Soviet Union. Starting in Russia, the outbreak reaches the Newly Independent States in 1991.[22][21] | |
1996 | Medical development | Lederle Laboratories licenses diphtheria and tetanus toxoids and acellular pertussis vaccine Acel-Imune, for use as the first through fifth doses in the series.[13] | |
1997 | Medical development | British pharmaceutical company SmithKline Beecham licenses Infanrix (diphtheria and tetanus toxoids and acellular pertussis vaccine adsorbed), for the first four doses of the series.[13] | |
1998 | Medical development | North American Vaccine Inc licenses Certiva (diphtheria and tetanus toxoids and acellular pertussis vaccine adsorbed), for boosting immunization of infants and children.[13] | |
1999 | Medical development | Connaught Laboratories licenses diphtheria and tetanus toxoids and acellular pertussis vaccine Tripedia.[13] | |
2002 | Medical development | British pharmaceutical GlaxoSmithKline licenses Pediarix, a vaccine combining diphtheria, tetanus, acellular pertussis, inactivated polio, and hepatitis B antigens.[13] | |
2002 | Medical development | Aventis Pasteur licenses diphtheria and tetanus toxoids and acellular pertussis vaccine Daptacel.[13] | |
2004 | Medical development | Aventis Pasteur licenses vaccine Decavac, indicated for active immunization against tetanus and diphtheria.[13][23] | |
2005 | Medical development | Sanofi Pasteur licenses Menactra, the first meningococcal polysaccharide (Serogroups A, C, Y and W-135) diphtheria toxoid conjugate vaccine. This would be the first immunogenic meningococcal vaccine indicated for children younger than 2 years of age.[13] | |
2007 | Report | 4,190 cases of diphtheria are reported globally.[15] | |
2011 | Medical development | United States Food and Drug Administration approves Boostrix (developed by GlaxoSmithKline) to prevent tetanus, diphtheria, and pertussis in older people.[13] | United States |
See also
References
- ↑ 1.0 1.1 1.2 1.3 "The strangler". museumofhealthcare.ca. Retrieved 9 May 2017.
- ↑ 2.0 2.1 2.2 2.3 KWANTES, W. "Diphtheria in Europe" (PDF). nih.gov. Retrieved 8 May 2017.
- ↑ 3.0 3.1 Ladant, Daniel; Alouf, Joseph E.; Popoff, Michel R. The Comprehensive Sourcebook of Bacterial Protein Toxins.
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 "Emil von Behring: The Founder of Serum Therapy". nobelprize.org. Retrieved 9 May 2017.
- ↑ 5.0 5.1 "Diphtheria Facts". emedicinehealth.com. Retrieved 9 May 2017.
- ↑ "Clinicians". cdc.gov. Retrieved 10 May 2017.
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 "Diphtheria : Clinical Manifestations , Diagnosis , and Role of Immunization In Prevention" (PDF). iosrjournals.org. Retrieved 10 May 2017.
- ↑ "Diphtheria". medscape.com. Retrieved 8 May 2017.
- ↑ 9.0 9.1 9.2 9.3 "Corynebacterium diphtheriae" (PDF). cdc.gov. Retrieved 10 May 2017.
- ↑ 10.0 10.1 10.2 10.3 10.4 Current Developments in Biotechnology and Bioengineering: Human and Animal Health Applications (Vanete Thomaz Soccol, Ashok Pandey, Rodrigo R. Resende ed.). Retrieved 10 May 2017.
- ↑ "Archives & Special Collections Acquires Samuel Bard Work". columbia.edu. Retrieved 11 May 2017.
- ↑ "Pierre Bretonneau". historyofvaccines.org. Retrieved 9 May 2017.
- ↑ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 "Vaccine Timeline". immunize.org. Retrieved 8 May 2017.
- ↑ A Brief History of Pharmacy: Humanity's Search for Wellness (Virgil Schijns, Derek O'Hagan ed.). Retrieved 11 May 2017.
- ↑ 15.0 15.1 "Diphtheria: The Plague Among Children". historyofvaccines.org. Retrieved 8 May 2017.
- ↑ "Diphtheria. Symptoms and Causative Agent". historyofvaccines.org. Retrieved 10 May 2017.
- ↑ 17.0 17.1 "Diphtheria, Tetanus (Lockjaw), and Pertussis (Whooping Cough) Cases and Deaths, and DTaP Vaccination Rates". procon.org. Retrieved 10 May 2017.
- ↑ Medical Sciences - Volume I (B.P. Mansourian, S.M. Mahfouz, A. Wojtezak ed.). Retrieved 9 May 2017.
- ↑ "The Plate Virulence Test for Diphtheria". bmj.com. Retrieved 11 May 2017.
- ↑ 20.0 20.1 "Diphtheria". who.int. Retrieved 10 May 2017.
- ↑ 21.0 21.1 "History in Focus: Diphtheria Epidemic". hampton.lib.nh.us. Retrieved 10 May 2017.
- ↑ "Diphtheria Outbreak -- Russian Federation, 1990-1993". cdc.gov. Retrieved 10 May 2017.
- ↑ "HIGHLIGHTS OF PRESCRIBING INFORMATION" (PDF). vaccineshoppe.com. Retrieved 8 May 2017.