Difference between revisions of "Timeline of chemical risk"
From Timelines
Line 24: | Line 24: | ||
{| class="wikitable" | {| class="wikitable" | ||
! Time period !! Development summary !! More details | ! Time period !! Development summary !! More details | ||
+ | |- | ||
+ | | 1950s || || Experts at both national and international levels extensively deliberate on the escalating issues of air pollution, the existence of pesticide residues and toxic dyes in food, and general concerns regarding pesticides.<ref name="Homburg"/>{{rp|12-13}} | ||
|- | |- | ||
| 1960s || || There is a notable increase in environmental awareness, marked by the rise of a growing environmental movement worldwide and heightened governmental efforts to monitor and regulate pollution.<ref name="Homburg"/>{{rp|12}} | | 1960s || || There is a notable increase in environmental awareness, marked by the rise of a growing environmental movement worldwide and heightened governmental efforts to monitor and regulate pollution.<ref name="Homburg"/>{{rp|12}} | ||
|- | |- | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 14:33, 27 January 2024
This is a timeline of chemical risk.
Contents
Sample questions
The following are some interesting questions that can be answered by reading this timeline:
Big picture
Time period | Development summary | More details |
---|---|---|
Pre-18th century | Early exploration and unawareness | During this era, there is a limited understanding of chemical risks as ancient civilizations encounter hazards without systematic awareness. The use of chemicals in traditional practices and alchemical experiments characterize this period. |
18th – 19th century | Industrial Revolution and Uncontrolled Expansion | The Industrial Revolution brings rapid industrialization and the introduction of numerous new chemicals. However, the lack of safety measures leads to accidents and health issues. Industrial processes expand without comprehensive safety regulations during this time. |
20th century | Awareness, regulation, and environmental concerns | The 20th century marks a significant shift with increasing awareness of chemical risks. Environmental and health concerns gain prominence, triggered by events such as the use of chemical weapons in World Wars and the Bhopal Disaster. Regulatory frameworks are established, and the environmental movement emerges. |
Late 20th century -present | Global Harmonization and technological advances | International efforts focus on harmonizing chemical regulations. Advances in toxicology, risk assessment, and chemical analysis play a crucial role. Global conventions (Stockholm, Rotterdam) are implemented, and significant regulations like REACH (2007) emerge, addressing contemporary challenges in chemical risk management. Ongoing research explores emerging technologies and their associated risks. |
Summary by decade
Time period | Development summary | More details |
---|---|---|
1950s | Experts at both national and international levels extensively deliberate on the escalating issues of air pollution, the existence of pesticide residues and toxic dyes in food, and general concerns regarding pesticides.[1]:12-13 | |
1960s | There is a notable increase in environmental awareness, marked by the rise of a growing environmental movement worldwide and heightened governmental efforts to monitor and regulate pollution.[1]:12 |
Full timeline
Year | Risk type | Event type | Agent | Details | Country/location |
---|---|---|---|---|---|
1855 | Non-intentional | Literature | Belgian pharmacist Léon Peeters publishes a brochure titled Salubrité publique: Guérison radicale de la maladie des pommes de terre et d’autres végétaux, attributing the devastating potato plant epidemic of the late 1840s to hazardous vapors from the chemical industry. Peeters suggests that these vapors caused widespread famine in Europe and posed risks to small children through airborne poisons. The ensuing protests and expert testimonies reveal a blend of chemical and toxicological perspectives regarding gases like hydrogen chloride, sulfur dioxide, and nitrogen oxides, alongside traditional beliefs in the roles of miasmas and contagions in public hygiene.[1]:9 | Belgium, Europe | |
1865 | Hermann Eulenberg, a German state physician responsible for the Rhineland, synthesizes the impacts of hazardous vapors on human health and vegetation in a comprehensive textbook on noxious and poisonous gases. This publication follows protests and expert testimony triggered by Belgian pharmacist Léon Peeters' 1855 brochure linking a potato plant epidemic to dangerous vapors from the chemical industry. Eulenberg's textbook, spanning five hundred pages, adopts a primarily chemical perspective, distinguishing suffocating gases and three types of toxic gases (narcotic, irritating, biolytic) with distinct formulae. While emphasizing a chemical approach, the text also discusses gaseous miasmas and their epidemic consequences, reflecting the complex views on (gaseous) poisons prevalent in the mid-nineteenth century. This work serves as a milestone at the intersection of public health and toxicology, providing insights into "external" industrial hygiene that later evolves into environmental toxicology.[1]:10 | Germany | |||
1880 | The "minimal lethal dose" emerges as a crucial concept in toxicology during a period when industry begins playing a prominent role in the field. As the number of industry-produced chemicals surges, their often-unknown toxicological properties pose health risks to workers. Industrial toxicology gains prominence, and a paradigm shift occurrs, shaping the overall understanding of poisons. The concept of the "minimal lethal dose" becomes integral, serving as a quantitative measure to compare the toxicity of distinct acute poisons. This notion marks a significant step in quantifying the harmful effects of chemicals and establishing threshold values to assess their impact.[1]:11 | ||||
1895 | Non-intentional | Dr. Ludwig Rehn reports cases of bladder tumors among workers in the magenta department of a German aniline dyeworks. This discovery, presented at the Congress of the German Society of Surgery, marks one of the earliest instances of industrial carcinoma diagnosis. The affected workers were exposed to magenta, a chemical produced from aniline, for almost four decades. Subsequently, similar cases emerge in other aniline dyeworks, leading to the term "aniline cancer." This event highlights the link between industrial chemicals and cancer, foreshadowing future findings of carcinogenic properties in various industrial substances.[1]:1 | Germany | ||
1925 (June 17) | Intentional | International legislation and agreements | The Geneva Protocol is created, with the purpose to prohibit the use of chemical and bacteriological methods of warfare. This protocol marks the first international endeavor to restrict the utilization of biological agents in warfare.[2]:p14[3] | ||
1925 | Non-intentional | Literature | John Hepburn publishes Crop Production, Poisoned Food, and Public Health, in which he contends that the utilization of fertilizers and pesticides in agriculture constitute a significant factor contributing to cancer. He perceives cancer as a contagious ailment. This argument is associated with concerns about chemical risk, highlighting the potential dangers posed by the use of specific chemicals in agriculture and their potential impact on public health, particularly in terms of cancer development.[1]:10 | ||
1930s | A German scientist created Tabun, the first nerve agent, while attempting to develop a more potent pesticide. The German army weaponized Tabun as a chemical weapon, and it was followed by the development of Sarin and Soman in the late 1930s to early 1940s. American scientists designated these agents as "G" agents, leading to Tabun being labeled GA, Sarin as GB, and Soman as GD. In the 1950s, more stable variants known as the V agents, including VX (Venom X) developed by the British in 1952, emerged. VX, characterized by increased stability, can persist in the environment for several weeks after release.[4]:120-121 | ||||
1962 | Non-intentional | Literature | Rachel Carson publishes Silent Spring, which focuses on the harmful impacts of pesticides, specifically DDT, on birds. The publication played a key role in the 1972 ban of DDT in the United States. Widely recognized for its influence, the book is credited with catalyzing the environmental movement and fostering a heightened concern for the enhanced regulation and management of pesticides and other chemicals.[5] | United States | |
1971 | OECD member countries, recognizing the need for international cooperation on chemicals, established a Chemicals Group within the OECD. This decision was motivated by several factors, including the presence of major chemical-producing nations among OECD members, a shared "like-mindedness" facilitating agreements, the flexibility to make agreements legally or politically binding through OECD Council Acts, the ability to convene national experts, and the organization's multidisciplinary nature enabling beneficial interactions with various policy areas. The OECD provides a platform to address specialized scientific issues, serving as an interface between government regulators and scientists.[5] | ||||
1974 | Non-intentional | American chemist F. Sherwood Rowland and Mexican chemist Mario Molina publish a groundbreaking article in the scientific journal Nature, providing compelling evidence of the threats posed by chlorofluorocarbons (CFCs) to the stratospheric ozone layer. Their research demonstrates the harmful impact of these chemicals on the Earth's protective ozone layer. This work would become pivotal in raising awareness about the environmental risks associated with CFCs, as it would contribute significantly to the understanding of their role in ozone depletion. The recognition of their pioneering contributions would come in 1995 when Rowland, Molina, and Paul Crutzen are jointly awarded the Nobel Prize for Chemistry. The acknowledgment highlights the critical importance of their research in the field of atmospheric chemistry and its implications for global chemical risk, particularly in the context of ozone layer protection.[5] | United States | ||
1975 | Intentional | Terrorism (state-sponsored) | Parathion, thallium, multiple | During the Rhodesian conflict, the minority white community in Rhodesia face challenges from native African nationalists. Stretched thin, Rhodesian forces adopt unconventional methods, employing commercially available poisons like parathion and thallium. They contaminate clothing, water sources, and food, resulting in an estimated 1,500–2,500 guerilla deaths, with numerous civilians affected. Facing native African nationalist insurgents, the Rhodesian forces struggled due to limited resources. Rhodesia's chemical warfare, marked by low-tech methods, demonstrate a brutal, yet unconventional approach to counter the growing power of the insurgent forces.[6] | Zimbabwe (Rhodesia) |
Early 1980s | Intentional | Biological warfare program | Multiple | Project Coast starts operating as South Africa's covert Chemical and Biological Warfare (CBW) program. Operational until early 1990s, the program would be found to have developed lethal chemical and biological weapons, including sterilization toxins and concealed poisons, targeting African National Congress political leaders and black township populations. Project Coast would be accused of contaminating water supplies with cholera, aiding Rhodesian troops with anthrax and cholera, and employing toxic agents for political assassinations. Investigations would lead to dismissals and document destruction, with South Africa officially maintaining the program's defensive nature, despite international concerns.[7] | South Africa |
1984 | Bhopal Disaster in India highlights the devastating consequences of chemical accidents. | ||||
1985 | The 1985 United Nations Vienna Convention for the Protection of the Ozone Layer is held as an international treaty aimed at addressing the environmental and health risks associated with the release of certain chemicals known to deplete the ozone layer. It is a landmark agreement that addresses chemical risks associated with ozone depletion. | Austria | |||
1987 | Around 100 individuals in India fall ill due to the consumption of wheat products contaminated with mycotoxins, a result of heavy rains.[4]:155 | India | |||
1988 | Literature (journal) | Chemical Research in Toxicology is first issued by the American Chemical Society. | United States | ||
1992 | Earth Summit in Rio de Janeiro emphasizes sustainable development, including chemical safety. | Brazil | |||
1994 | The Organization for Economic Co-operation and Development (OECD) initiates a harmonization effort, collaborating with both OECD member nations and several non-member economies. The objective is to standardize the criteria for classifying human health and environmental hazards. Concurrently, a United Nations expert group and the International Labour Organisation (ILO) addresses physical hazards and hazard communication. The outcomes of the OECD's endeavors, presented in 2001, serves as the foundation for the establishment of the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) in 2002.[5] | ||||
1999 | Dioxin affair | Belgium | |||
2015 | Adoption of the UN 2030 Agenda for Sustainable Development includes a goal related to chemical safety. |
Meta information on the timeline
How the timeline was built
The initial version of the timeline was written by FIXME.
Funding information for this timeline is available.
Feedback and comments
Feedback for the timeline can be provided at the following places:
- FIXME
What the timeline is still missing
Timeline update strategy
See also
External links
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Homburg, Ernst; Vaupel, Elisabeth (1 August 2019). Hazardous Chemicals: Agents of Risk and Change, 1800-2000. Berghahn Books. ISBN 978-1-78920-320-2.
- ↑ Ryan, Jeffrey R. (2016). "Seeds of Destruction". Biosecurity and Bioterrorism: 3–29. doi:10.1016/B978-0-12-802029-6.00001-3.
- ↑ Frischknecht, Friedrich (June 2003). "The history of biological warfare". EMBO Reports. 4 (Suppl 1): S47–S52. ISSN 1469-221X. doi:10.1038/sj.embor.embor849.
- ↑ 4.0 4.1 Melnick, Alan (3 December 2007). Biological, Chemical, and Radiological Terrorism: Emergency Preparedness and Response for the Primary Care Physician. Springer Science & Business Media. ISBN 978-0-387-47232-4.
- ↑ 5.0 5.1 5.2 5.3 "40 Years of Chemical Safety at the OECD: Quality and Efficiency" (PDF). oecd.org. Retrieved 27 January 2024.
- ↑ "Dirty War: Rhodesia and Chemical Biological Warfare 1975-1980 (Book Review)". PRISM | National Defense University. Retrieved 6 October 2023.
- ↑ "What Happened In South Africa? | Plague War | FRONTLINE | PBS". www.pbs.org. Retrieved 6 October 2023.